• Title/Summary/Keyword: Parametric Study

Search Result 3,721, Processing Time 0.034 seconds

Bearing Capacity Analyses of Shallow Foundations in Reinforced Slopes

  • Kim, Hong-Taek;Choi, In-Sik;Sim, Young-Jong
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.127-148
    • /
    • 1996
  • Recently, foundations of heavy structures such as bridge abutments have been built on slopes or near the crest of slopes at an increasing rate. Because the bearing capacity of such foundations is considerably lower than the bearing capacity of the same soil on a level ground, deep footings such as piles and caissons are often used. However, the costs of such methods are generally very high. One of the new techniques to overcome the problem is to place reinforcing members such as geosynthetics or metal strips horizontally at some depths beneath the footings. Rational methods of analysis to predict the bearing capacity of footings in reinforced slopes are therefore needed. This paper proposes an analytical method for estimating the increase in bearing capacity gained from the included horizontal strips or ties of tensile reinforcing in the foundation soil below the footing built near the crest of a slope. A failure mechanism, including the concept of'wide slab effect', adopted in the present study for analyzing the bearing capacity of foundations in reinforced slopes, is established through the observed model test behaviors described by Binquet SE Lee and Huang et al, and the Boussinesq solutions. The analytical results are then compared with the experimental data described in the paper by Huang et al. Also in order to properly evaluate the soil reinforcement interaction, typical pullout test values of the apparent friction coefficient, which usually vary with depths owing to both the increase of the shearing volume and the increase in local stress caused by soil dilatancy, are analyzed and related functionally. Furthermore, analytical parametric studies are carried out to investigate the effect and significance of various pertinent parameters associated with design of reinforced slope foundations. Keywords : Bearing capacity, Reinforced slope, Slab effect, Friction coefficient.

  • PDF

Difference of working memory according to academic achievement with college students: functional Magnetic Resonance Imaging (대학생의 학업성취도에 따른 시각적 작동 기억 차이: 기능적 자기공명영상법)

  • Hong, Jae-Ran;Hwang, Jung-Ha;Kim, Eun-Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.3
    • /
    • pp.173-182
    • /
    • 2012
  • It was well known that working memory highly related with academic achievement. The aim of this study was to investigate the differences of brain activation which visually evoked working memory(encoding and retrieval) through functional Magnetic Resonance Imaging(fMRI) in Higher Academic Achievement Group(HAAG) and Lower Academic Achievement Group(LAAG) of college students. 20 assigned college students participated in fMRI studies. They underwent totally 210 seconds repeated paradigm. Stimulation paradigm composed with resting time and encoding and retrieval seeing the figures from the mirror with head coil. The brain activation maps and their quantification were analyzed by the statistical parametric mapping(SPM99) program from level of significance 95%. HAAG was more significantly higher than LAAG in bilateral prefrontal lobe(brodmann 46) associated with working memory, inferior parietal lobe associated with attention, and visual association area in encoding figures test. Right dosoprefrontal lobe(BA 44), right fusiform gyrus associated with decision of figure and, lingual gyrus were more activated in retrieval test with HAAG. On the other hand, LAAG was more significantly higher than HAAG in cingulate gyrus during encoding test. Thalamus, basal ganglia, cerebellum were more activated in retrieval test. Consequently, We could guess from these results HAAG more effectively executed than LAAG in visual working memory test.

A Review on the Contemporary Changes of Capital Structures for the Firms belonging to the Korean Chaebols (한국 재벌기업들의 자본구조변화 추이에 관한 재무적 관점에서의 고찰)

  • Kim, Hanjoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.86-98
    • /
    • 2014
  • This study examined a long-standing issue with its perverse results in the Korean capital markets, such as any variant financial profiles over time, affecting capital structure for the firms belonging to the chaebols. It may be of interest to identify these components from the perspectives of international investors and domestic policy makers to implement their contingent strategies on the target leverage, since the U.S. financial turmoils in the late 2000s. Regarding the evidence from the three hypothesis tests on the firms in the chaebols, this research found that the control variabels measuring profitability, business risk, and non-debt tax shields, showed their statistically significant relationships with the different types of a debt ratio. While FCFF(free cash flow to the firm) showed its significant influence to discriminate between the firms in the chaebols and their counterparts, not belonging to the chaebols, BDRELY as the ratio of liabilities to total assets, comprising the enhanced 'Dupont' system, only showed its statistically significant effect on leverage in the context of the parametric and nonparametric tests. In line with the results obtained from the present research, one may expect that a firm in the Korean chaebol, may control or restructure its present level of capital structure to revert to its target optimal capital structure towards maximizing the shareholders' wealth.

Effects of conventional and modified facemask therapies on dentofacial structures (변형된 페이스 마스크의 치아 및 골격적 효과)

  • Yagci, Ahmet;Uysal, Tancan
    • The korean journal of orthodontics
    • /
    • v.40 no.6
    • /
    • pp.432-443
    • /
    • 2010
  • Objective: The purpose of this prospective study was to evaluate the dentofacial effects of conventional and modified facemask therapies with rapid maxillary expansion, in a group of Class III patients; and compared with an untreated control group. Methods: The conventional facemask group (Group 1) comprised of 24 patients, 13 girls and 11 boys (mean age, $9.2{\pm}1.4$ years); the modified facemask treatment group (Group 2) comprised of 24 patients, 12 girls and 12 boys (mean age, $9.3{\pm}1.6$ years); and the control group (Group 3) comprised of 21 subjects, 11 girls and 10 boys (mean age, $9.8{\pm}1.9$ years). Treatment and control changes within the groups and the differences between the groups were analyzed statistically. Intra-group comparisons were evaluated using the non-parametric Wilcoxon's test and intergroup changes were analyzed using the Kruskal-Wallis test. The statistical significance of intergroup differences was further assessed with the Mann-Whitney test for independent samples and applying Bonferroni's correction (p < 0.016). Results: In group 1, SNB changes were less than the control. There were increases in SNA, ANB, SN-MP, A to N perp and Upper lip to E plane. In group 2, SNB, U1-NA (mm) U1-NA (${\circ}$) and Pog to N perp (mm) changes were less than the control. There were increases in SNA, ANB, SN-MP, A to N perp and Upper lip to E plane. Conclusions: Modified facemask appliance can be used effectively in Class III patients with a retrognathic maxilla. Facemask therapies with expansion resulted in an anterior advancement and translation of maxilla without rotation; and the mandible moved downward and backward ward in both treatment groups.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

Optimization Design of Damping Devices for a Super-Tall Building Using Computational Platform (전산플랫폼을 이용한 초고층구조물의 감쇠장치 최적화 설계)

  • Joung, Bo-Ra;Lee, Sang-Hyun;Chung, Lan;Choi, Hyun-Chul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.145-152
    • /
    • 2015
  • In the study, the effects of damping devices on damping ratio increase and wind-load reduction were investigated based on the computational platform, which is one of the parametric modeling methods. The computational platform helps the designers or engineers to evaluate the efficacy of the numerous alternative structural systems for irregular Super-Tall building, which is crucial in determining the capacity and the number of the supplemental damping devices for adding the required damping ratios to the building. The inherent damping ratio was estimated based on the related domestic and foreign researches conducted by using real wind-load records. Two types of damping devices were considered: One is inter-story installation type passive control devices and the other is mass type active control devices. The supplemental damping ratio due to the damping devices was calculated by means of equivalent static analysis using an equation suggested by FEMA. The optimal design of the damping devices was conducted by using the computational platform. The structural element quantity reduction effect resulting from the installation of the damping devices could be simply assessed by proposing a wind-load reduction factor, and the effectiveness of the proposed method was verified by a numerical example of a 455m high-rise building. The comparison between roof displacement and the story shear forces by the nonlinear time history analysis and the proposed method indicated that the proposed method could simply but approximately estimate the effects of the supplemental damping devices on the roof displacement and the member force reduction.

Development of a Computation Code for the Verification of the Vulnerability Criteria for Surf-riding and Broaching Mode of IMO Second-Generation Intact Stability Criteria (IMO 2세대 선박 복원성 기준에 따른 서프라이딩/ 브로칭 취약성 기준 검증을 위한 계산 코드 개발)

  • Shin, Dong Min;Oh, Kyoung-gun;Moon, Byung Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.518-525
    • /
    • 2019
  • Recently, the Sub-Committee on SDC (Ship Design and Construction) of IMO have discussed actively the technical issues associated with the second-generation intact stability criteria of ships. Generally, second generation intact stability criteria refer to vulnerability five modes ship stability which occurs when the ship navigating in rough seas. As waves passes the ship, dynamic roll motion phenomenon will affect ship stability that may lead to capsizing. Multi-tiered approach for second generation of intact stability criteria of IMO instruments covers apply for all ships. Each ship is checked for vulnerability to pure loss of stability, parametric roll, and broaching/surf-riding phenomena using L1(level 1) vulnerability criteria. If a possible vulnerability is detected, then the L2(level 2) criteria is used, followed by direct stability assessment, if necessary. In this study, we propose a new method to verify the criteria of the surf-riding/broaching mode of small ships. In case, L1 vulnerability criteria is not satisfied based on the relatively simple calculation using the Froude number, we presented the calculation code for the L2 criteria considering the hydrodynamics in waves to perform the more complicated calculation. Then the vulnerability criteria were reviewed based on the data for a given ship. The value of C, which is the probability of the vulnerability criteria for surf-riding/broaching, was calculated. The criteria value C is considered in new approach method using the Froude-Krylov force and the diffraction force. The result shows lower values when considering both the Froude-rylov force and the diffraction force than with only the Froude-Krylov force was considered. This difference means that when dynamic roll motion of ship, more exact wave force needs considered for second generation intact stability criteria This result will contribute to basic ship design process according to the IMO Second-Generation Intact Stability Criteria.

Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition (앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측)

  • Kim, Eui-Jin;Kim, Dong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.579-586
    • /
    • 2018
  • Short-term prediction of travel speed has been widely studied using data-driven non-parametric techniques. There is, however, a lack of research on the prediction aimed at urban areas due to their complex dynamics stemming from traffic signals and intersections. The purpose of this study is to develop a hybrid approach combining ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) for predicting urban travel speed. The EEMD decomposes the time-series data of travel speed into intrinsic mode functions (IMFs) and residue. The decomposed IMFs represent local characteristics of time-scale components and they are predicted using an ANN, respectively. The IMFs can be predicted more accurately than their original travel speed since they mitigate the complexity of the original data such as non-linearity, non-stationarity, and oscillation. The predicted IMFs are summed up to represent the predicted travel speed. To evaluate the proposed method, the travel speed data from the dedicated short range communication (DSRC) in Daegu City are used. Performance evaluations are conducted targeting on the links that are particularly hard to predict. The results show the developed model has the mean absolute error rate of 10.41% in the normal condition and 25.35% in the break down for the 15-min-ahead prediction, respectively, and it outperforms the simple ANN model. The developed model contributes to the provision of the reliable traffic information in urban transportation management systems.

Effects of Interactions between the Concrete Deck and Steel Girders on the Dynamic Behavior of Simply Supported Skew Bridges (주형과 상판과의 상호작용이 단순 사교의 동적거동에 미치는 영향)

  • Moon, Seong-Kwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.593-604
    • /
    • 2007
  • Although composite construction has more mechanical advantages compared to noncomposite construction, the design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction may cause large stresses in the bridge deck. In this study, the analytical model considered dynamic behaviors for noncomposite skew bridges was proposed. Using the proposed analytical model, the validity of the application of noncomposite construction to skew bridges was checked. Also, the effects of interactions between the concrete deck and steel girders such as composite construction, partial composite construction, and noncomposite construction on the dynamic characteristics and dynamic behaviors of simply supported skew bridges were investigated. A series of parametric studies for the total 27 skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. Although the slip at the interfaces between the concrete deck and steel girders results in the reduction of seismic total base shear in the transverse direction due to period elongation, it causes an undesirable behavior of skew bridges by the modification in mode shapes and distributions of stiffness. Shear connectors placed by minimum requirements for partial composite action have an effect on reducing the girder stresses and deck stresses; except case of some skew bridges, the magnitude of the girder stresses and deck stresses obtained from partial composite skew bridges is similar to or slightly more than those acquired from composite skew bridges.

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.