• Title/Summary/Keyword: Parameters calculation

Search Result 1,502, Processing Time 0.032 seconds

Calculation of Proton-Induced Reactions on Ti, Fe, Cu and Mo up to 60 MeV for TLA Application

  • Kim, Doohwan;Lee, Young-Ouk;Jonghwa Chang
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.595-607
    • /
    • 1999
  • The reaction cross-sections of $^{nat}$Ti(p,X)$^{48}$ V, $^{nat}$Fe(p,X)$^{56}$ Co, $^{nat}$Cu(p,X)$^{65}$ Zn and $^{nat}$Mo(p,X)$^{96}$ Tc for TLA application are calculated in the frame of the ECIS-GNASH code system up to 60 MeV. The calculated results are compared with the experimental data taken from the EXFOR at the NEA Data Bank. A preliminary calculation with the global optical parameters of Varner et al. shows considerable differences from the experimental data at low energy range. The global optical parameters for the imaginary volume potential and the diffuseness of the imaginary potential are adjusted to achieve a better description of the experimental data in the vicinities of peak position below 16 MeV. 16 MeV.

  • PDF

EVALUATION OF THE UNCERTAINTIES IN THE MODELING AND SOURCE DISTRIBUTION FOR PRESSURE VESSEL NEUTRON FLUENCE CALCULATIONS

  • Kim, Yong-Il;Hwang, Hae-Ryong
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.237-241
    • /
    • 2001
  • The uncertainties associated with fluence calculation at the pressure vessel have been evaluated for the Korean Next Generation Reactor, APR1400. To obtain uncertainties, sensitivity analyses were performed for each of the parameters important to calculated fast neutron fluence. Among the important parameters to the overall uncertainties, reactor modeling and core neutron source were examined. Mechanical tolerances, composition and density variations in the reactor materials as well as application of $r-{\theta}$ geometry in rectilinear region contribute to uncertainty in the reactor modeling. Depletion and buildup of fissile nuclides, instrument error related to core power level, uncertainty of fuel pin burnup, and variation of long-term axial peaking factors are main contributors to the core neutron source uncertainty. The sensitivity analyses have shown that the uncertainty in the fluence calculation at the reactor pressure vessel is +12%.

  • PDF

Study on the Calculation of Friction Coefficient for Sheet Metal Forming Analysis (박판 성형해석을 위한 마찰계수의 산정에 관한 연구)

  • Keum, Y.T.;Shim, J.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.27-30
    • /
    • 2007
  • In order to measure the friction coefficient used in sheet metal forming analysis, a friction tester was manufactured and friction tests were performed in various forming conditions. Based on the friction coefficients measured, a mathematical friction model was constructed in terms of lubricant viscosity, blank holding force, punch velocity and sheet roughness. In addition, the effect of the number of forming parameters in the calculation of friction coefficient on the accuracy of sheet metal forming analysis was investigated by comparing the punch loads obtained from the FEM simulation, in which the friction coefficients were determined by a few parameters with the experimental measurement.

  • PDF

A Protective Effectiveness Measure for Distribution Systems (배전계통 보호시스템의 보호능력의 평가방법)

  • 현승호;이승재;임성일;최인선;신재항;최면송
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.249-256
    • /
    • 2004
  • This paper suggests a novel evaluation scheme of protective effectiveness in distribution systems. The adequacy of every parameter in a protective device is evaluated for the setting or correction rules. Then, the protective effectiveness of a device, device-wise effectiveness, is obtained by the combination of the parametric evaluation results. The coordination-wise effectiveness between devices can be calculated by evaluating the parameters which contribute the performance of coordination. The protective effectiveness of the whole system can be obtained by combining the device-wise and coordination-wise effectiveness values. The rules, in this paper, are categorized into three groups; rules for single parameter, rules for coordination between parameters, and rules for coordination between protective devices to form a hierarchical calculation model. The proposed method is applied to a typical distribution network to show its effectiveness.

Calculation of Equivalent d-q Model Parameters of A Squirrel Cage Induction Motor Using Finite Element Method (유한요소법에 의한 농형유도전동기 d-q 등가모델의 회로정수 산출)

  • Choi, Chong-Sun;Koo, Tae-Man
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.315-317
    • /
    • 1999
  • This paper presents a method for determining of the equivalent d-q model parameters of three-phase squirrel cage induction motors. The method is based on the use of a finite-element field calculation which enables the precise slot geometry to be modelled accurately, and includes the effects of magnetic saturation of iron core. The proposed method can reduce computational costs compared with the method that needs the iterative field analysis to obtain the impedance. It is verified that the circuit inductances are shown as functions of the current.

  • PDF

Parametric Study of Multi-Element Airfoils' Aerodynamic Characteristics (다중-익형의 공력 특성에 대한 파라미터 연구)

  • Park Min-Jeoung;Kim Byoungsoo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.88-93
    • /
    • 2002
  • In the present research, a parametric study of aerodynamic characteristics for multi-element airfoils is performed. The major geometric parameters of interest are the gap distance between airfoils and relative deflection angle of slat/flap. The present results are mainly obtained by using inviscid flow calculation, and the aerodynamic characteristics are focused on the surface pressure distribution and the lifts. The results of the present research may be used as not only qualitative data but also quantitative data for small angle of attack flows, where the viscous effect does not play major role in terms of surface pressure distribution and lifts. A further research in this subject including viscous calculation and more geometric parameters is to be performed in the future.

  • PDF

A calculation on the Metal-Film Mixing by Intense Pulse Ion Beam (IPIB)

  • Le, X.Y.;Yan, S.;Zhao, W.J.;Wang, Y.G.;Xue, J.M.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.74-78
    • /
    • 2003
  • In this paper, we studied, by numerical calculation, a system, which was composed of metal-film and metal-substrate irradiated by IPIB with beam ion energy 250 keV, current density 10 to 250 A/$\textrm{cm}^2$. While the IPIB irradiation was going on, an induced effect named mixing occurred. In this case, metal-film and part of metal-substrate melted and mixed. The mixing state was kept as it was in melting phase due to the fast cooling rate. Our works were simulating the heating and cooling process via our STEIPIB program and tried to find proper parameters for a specific film-substrate system, 500 nmtitanium film coated on aluminum, to get best mixing results. The parameters calculated for such Ti-Al system were compared with the experimental results and were in good accordance to the experimental results.

A Study on the Optimum Design of Soltless Type PMLSM Using Genetic Algorithm and 3-D Space Harmonic Method (유전 알고리즘과 3차원 공간고조파법을 이용한 Soltless Type PMLSM의 최적설계에 관한 연구)

  • 이동엽;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.463-468
    • /
    • 2004
  • This paper was applied space harmonic method as a characteristic analysis technique for slotless PMLSM. There is advantages of active response to the change of design parameters as well as reduction of the calculation time. The method can be overcome disadvantages of finite element analysis that needs long times calculation, repetitions of pre and post-process. In this paper, 3D-space harmonic method was applied to consider the precise description of end turn coil shape and the changes of characteristic according to changes of length of z-axis direction. The thrust of optimal design was performed using genetic algorithm to enhance the thrust which is the disadvantage of slotless type PMLSM. For design parameters, width of permanent magnet, width of coil, width of coil inner and lengths of z-axis direction were selected. For objective functions. thrust per weight. thrust per volume. multi-objective function was selected.

A Modified Calculation of Electromagnetic Shielding Effectiveness Considering Some electrical Parameters (발산가응계통에서의 뉴톤-랍슨 전력게통합)

  • Sang-Jin Lee;Myung-Hwan Oh
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.12
    • /
    • pp.173-179
    • /
    • 1982
  • This paper presents a modified quasi-static approximate solution derived from the Maxwell's equations of integral form for the calculation of magnetic shielding effectiveness in a non-uniform enclosure such as metal-clad high-voltage test laboratory. It also describes the simplified relationship between the electrical parameters applicable to the engineering calculations of electromagnetic absorption loss which comprise the resultant effects due to the welding seams and short-circuited slots as well as the shielding material properties. A numerical example shows the fairly good agreements with experimental results measured on the absorption loss vs. incident wave frequency without any unreasonable rapid increase.

  • PDF

A New Direct Torque Control Scheme of an Induction Motor Using Duty Ratio Modulation

  • Park, Jeong-Woo;Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1223-1231
    • /
    • 2018
  • The direct torque control (DTC) scheme features a simple structure thanks to stator flux-oriented control. It has the advantage of robustness against motor parameters variation since only the stator resistance is involved in the control scheme. On the other hand, the disadvantage of DTC is large torque ripple. To reduce the torque ripple, many studies on DTC-space vector modulation (DTC-SVM) schemes, which modulate the duty ratio with a fixed switching cycle, have been proposed. However, there is the difficulty in obtaining the duty ratio for DTC-SVM. Hence, this paper proposes a new duty ratio selection and stator flux calculation methods for reducing torque ripple. Simulations and experiments were carried out to determine the validity of the proposed method. The proposed scheme has simplified the duty ratio command and achieved the same control performance as the conventional duty ratio modulation method without using the information of motor parameters.