• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.028 seconds

On an ptimization problem of evasion parameters In minmax differential games

  • Yugai, L.P.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.495-508
    • /
    • 1997
  • The problem of optimization in choosing of evasion parameters in differential games is considered. Existence of optimal parameters is proved and algorithm of their is shown. The example is cited. This work adjoins investigations [1-11].

  • PDF

Determination of optimal parameters for perforated plates with quasi-triangular cutout by PSO

  • Jafari, Mohammad;Hoseyni, Seyed A. Mahmodzade;Chaleshtari, Mohammad H. Bayati
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.795-807
    • /
    • 2016
  • This study tries to examine the effect of different parameters on stress analysis of infinite plates with central quasi-triangular cutout using particle swarm optimization (PSO) algorithm and also an attempt has been made to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of cutout on isotropic and orthotropic plates. Basis of the presented method is expansion of analytical method conducted by Lekhnitskii for circular and elliptical cutouts. Design variables in this study include fiber angle, load angle, curvature radius of the corner of the cutout, rotation angle of the cutout and at last material of the plate. Also, diagrams of convergence and duration time of the desired problem are compared with Simulated Annealing algorithm. Conducted comparison is indicative of appropriateness of this method in optimization of the plates. Finite element numerical solution is employed to examine the results of present analytical solution. Overlap of the results of the two methods confirms the validity of the presented solution. Results show that by selecting the aforementioned parameters properly, less amounts of stress can be achieved around the cutout leading to an increase in load-bearing capacity of the structure.

Multi-response optimization for milling AISI 304 Stainless steel using GRA and DFA

  • Naresh, N.;Rajasekhar, K.
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.67-80
    • /
    • 2016
  • The objective of the present work is to optimize process parameters namely, cutting speed, feed rate, and depth of cut in milling of AISI 304 stainless steel. In this work, experiments were carried out as per the Taguchi experimental design and an $L_{27}$ orthogonal array was used to study the influence of various combinations of process parameters on surface roughness (Ra) and material removal rate (MRR). As a dynamic approach, the multiple response optimization was carried out using grey relational analysis (GRA) and desirability function analysis (DFA) for simultaneous evaluation. These two methods are considered in optimization, as both are multiple criteria evaluation and not much complicated. The optimum process parameters found to be cutting speed at 63 m/min, feed rate at 600 mm/min, and depth of cut at 0.8 mm. Analysis of variance (ANOVA) was employed to classify the significant parameters affecting the responses. The results indicate that depth of cut is the most significant parameter affecting multiple response characteristics of GFRP composites followed by feed rate and cutting speed. The experimental results for the optimal setting show that there is considerable improvement in the process.

Analysis and Optimization of the Cladding Parameters for Improving Deposition Efficiency in Cladding using a Low Power Pulsed Nd:YAG Laser (저출력 펄스형 Nd:YAG 레이저를 사용한 클래딩에서 클래딩 변수들이 용착효율에 미치는 영향 분석 및 최적화)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.49-57
    • /
    • 2007
  • The optimization of the cladding parameters was studied to maximize the deposition efficiency in the laser cladding using a low power pulsed Nd:YAG laser. STS304 stainless steel plate and Co alloy powder were used as a substrate and powder for cladding, respectively. The six cladding parameters were selected through preliminary experiments and their effects on the deposition efficiency were analyzed statistically. Experiments were designed and carried out using the Taguchi experimental method using a L18 orthogonal array. It was found from the results of analysis of variance(ANOVA) that the powder feed position and powder feed angle had the most significant effects on the deposition efficiency, but the powder feed rate and laser focal position had nearly no effects. The deposition efficiency could be maximized at 0mm of the powder feed position and 50o of the powder feed angle in the experimental range. From this experimental analysis, a new laser cladding head with 20o of the powder feed angle was designed and manufactured. With a new laser cladding head, the highest deposition efficiency of 12.2% could be obtained.

Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

  • Boutheyna Gasmi;Boutheyna Gasmi;Septi Boucherit;Salim Chihaoui;Tarek Mabrouki
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.119-137
    • /
    • 2023
  • The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.

Robust optimum design of MTMD for control of footbridges subjected to human-induced vibrations via the CIOA

  • Leticia Fleck Fadel Miguel;Otavio Augusto Peter de Souza
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.647-661
    • /
    • 2023
  • It is recognized that the installation of energy dissipation devices, such as the tuned mass damper (TMD), decreases the dynamic response of structures, however, the best parameters of each device persist hard to determine. Unlike many works that perform only a deterministic optimization, this work proposes a complete methodology to minimize the dynamic response of footbridges by optimizing the parameters of multiple tuned mass dampers (MTMD) taking into account uncertainties present in the parameters of the structure and also of the human excitation. For application purposes, a steel footbridge, based on a real structure, is studied. Three different scenarios for the MTMD are simulated. The proposed robust optimization problem is solved via the Circle-Inspired Optimization Algorithm (CIOA), a novel and efficient metaheuristic algorithm recently developed by the authors. The objective function is to minimize the mean maximum vertical displacement of the footbridge, whereas the design variables are the stiffness and damping constants of the MTMD. The results showed the excellent capacity of the proposed methodology, reducing the mean maximum vertical displacement by more than 36% and in a computational time about 9% less than using a classical genetic algorithm. The results obtained by the proposed methodology are also compared with results obtained through traditional TMD design methods, showing again the best performance of the proposed optimization method. Finally, an analysis of the maximum vertical acceleration showed a reduction of more than 91% for the three scenarios, leading the footbridge to acceleration values below the recommended comfort limits. Hence, the proposed methodology could be employed to optimize MTMD, improving the design of footbridges.

Distributed Hybrid Genetic Algorithms for Structural Optimization (분산 복합유전알고리즘을 이용한 구조최적화)

  • 우병헌;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.407-417
    • /
    • 2003
  • Enen though several GA-based optimization algorithms have been successfully applied to complex optimization problems in various engineering fields, GA-based optimization methods are computationally too expensive for practical use in the field of structural optimization, particularly for large- scale problems. Furthermore, a successful implementation of GA-based optimization algorithm requires a cumbersome and trial-and-error routine related to setting of parameters dependent on a optimization problem. Therefore, to overcome these disadvantages, a high-performance GA is developed in the form of distributed hybrid genetic algorithm for structural optimization on a cluster of personal computers. The distributed hybrid genetic algorithm proposed in this paper consist of a simple GA running on a master computer and multiple μ-GAs running on slave computers. The algorithm is implemented on a PC cluster and applied to the minimum weight design of steel structures. The results show that the computational time required for structural optimization process can be drastically reduced and the dependency on the parameters can be avoided.

Effect of Shape Parameters of Tool on Improvement of Joining Strength in Clinching (클린칭 접합력 향상을 위한 금형 형상변수의 영향도 평가)

  • Kim, J.Y.;Lee, C.J.;Lee, S.K.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.392-400
    • /
    • 2009
  • Clinching is a method of joining sheet metals together. This process can be substituted for the resistance spot welding on the joining of aluminum alloys. However, the joining strength of the clinching is lower than that of welding and riveting. The objective of this paper is to evaluate the effect of shape parameters of tools on the joining strength of the clinching and to optimize clinching tools. Twelve parameters have been selected as shape parameters on the clinching tools such as punch and die. The design of experiments (DOE) method is employed to investigate the effect of the shape parameters of tools on the joining strength of the clinching. The neck thickness and undercut of the clinched sheet metal after the clinching, and the separation load at detaching are estimated from the result of FEA using DEFORM. Optimal combination of shape parameters to maximize the joining strength of clinching is determined on the basis of the result of DOE and FEA. In order to validate the result of DOE and FEA, the experiment of clinching is performed for the optimal combination of shape parameters. It is shown from the result of the experiment that optimization of shape parameters improves the joining strength of clinching.

A Study on Sensitivity Analysis for Selecting the Process Parameters in GMA Welding Processes (GMA 용접공정에서 공정변수 선정을 위한 민감도 분석에 관한 연구)

  • Kim, Ill-Soo;Shim, Ji-Yeon;Kim, In-Ju;Kim, Hak-Hyoung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.30-35
    • /
    • 2008
  • As the quality of a weld feint is strongly influenced by process parameters during the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. This paper focuses on the development of mathematical models fur the selection of process parameters and the prediction of bead geometry(bead width, bead height and penetration) in robotic GMA(Gas Metal Arc) welding. Factorial design can be employed as a guide for optimization of process parameters. Three factors were incorporated into the factorial model: arc current, welding voltage and welding speed. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The results obtained show that developed mathematical models can be applied to estimate the effectiveness of process parameters for a given bead geometry, and a change of process parameters affects the bead width and bead height more strongly than penetration relatively.

Overshoot design method of LQ-PID controller using convex optimization (블록형 최적화 기법에 의한 LQ-PID제어기의 오버슈트 설계방법)

  • Kim, Dae-Kwang;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.96-99
    • /
    • 2002
  • This paper proposes a method to select the overshoot design parameters of the LQ-PID controller by using convex optimization in order to satisfy the design specifications. The tuning parameters of LQ-PID controller are determinated by the relationships between the design parameter to control both the overshoot and the settling time and the weighting factors Q and R in LQR.

  • PDF