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ON AN OPTIMIZATION PROBLEM OF EVASION
PARAMETERS IN MINMAX DIFFERENTIAL GAMES

L. P. Yucal

ABSTRACT. The problem of optimization in choosing of evasion pa-
rameters in differential games is considered. Existence of optimal
parameters is proved and algorithm of their choice is shown. The
example is cited. This work adjoins investigations {1-11].

1. Introduction

We consider quasilinear differential game described by the system of
equations

(1.1) z=Cz+ f(u,v),

where z € R", (' is a constant (n X n) - matrix, u € P C RP,v € Q C R?
are controls of the pursuer and evader respectively, P and @ are non-
empty compacts, f(u,v) is a given function continuous with respect to
(u,v) € P x @ such that origin 0 of R lies in f(P, Q).

The game is ended when the state z reaches given terminal set M.
We suppose that M is given subspace of R™. The goal of the pursuer is
to terminate the game (1.1) by choosing a suitable measurable control
function u = wu(t) € P,t > 0. The goal of the evader is to avoid from
the terminal set M for all ¢ > 0 the trajectory of (1.1), beginning at the
initial point zg € R™\ M, by using of suitable mesurable control function
v =wv(t) € Q [1]. It is supposed that the evader by construction of the
value v(t) € () may uses the values u(s) € P,0 < s < ¢, equation (1.1),
initial point 2y, and terminal set M. Such games are colled minmax
differential games [2].
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Many papers have been devoted to the problem of evasion in linear,
quasilinear and nonlinear differential games (see, for example (1-10]),
where different sufficient conditions was presented. Usually these suf-
ficient conditions ensuring the possibility of evasion are formulated in
terms of some parameters, wich not determined uniquely. So the prob-
lems of optimal choice of these parameters is arisern.

In this paper definitions of optimal parameters are introduced, their
existence is proved and the algorithm of choice is shown.

2. A structure of orthogonal complement

We introduce now following notations. Let L be the orthogonal com-
plement of M in R",w C L be some nonzero subspase, S(w) be the unit
sphere of w with the center in origin of R", 7(w) be orthogonal projec-
tor of R"™ onto w, < b, ¢ > be the scalar product of vectors b € R™ and
ce R, |b|=+v<bb>, dim A and [A] be respectively the dimension
and carrier subspace of a set 4 C R", {a} be the set with unique point
a € R",w) +ws be the direct sum of subspaces w; C L and wy, C L, By(w)
is the ball of radius d > 0 with the center in 0 € R

In addition, let G(V') be the set of all subspaces of V C L with the
opening metric (12, p. 222]

(w1, we) max{y:;(gz)xelg&]) ly—=z l,yes;(&welsrl({n) |y —a [},
where wy C V and wy C V.
Put for every subspace w C L{w # {0})

Toi=m(w)C f(P,Q),

k(w) = min{i : T,,; # {0}},
0, if T,,={0}i=1,2..

LEMMA 1. Let w;,j = 1,2,...,p, be mutually orthogonal subspaces of
G(L) and let w = wy + wy —~ ... + w,. Then

Twﬂ' CTw,.i+’Tu2,i+--~+TwP,i7 1= 12,p
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The proof follows easily from the relation for orthogonal projectors :
m(w) = 7(w1) + T(wa) + ... + 7T(wyp).

LEMMA 2. For arbitrary subspace w C L satisfying k(w) > 1, the
inequality k(w) > k(L) is fulfilled.

Proof. The case k(L) = 0 is trivial. Let us consider the case k(L) > 1.

First we will show that there exists a subspace w - L,w # L, such that
k(w) > 1. Really, in opposite case we have k(w) = 0 forallw C L(w # L).
Then for the orthogonal complement @ to w in L we have also k(@) = 0,
hence

Torry = Towry = {0}.

Last equalities and lemma 1 give us following contradiction
{0} # Trrwy € Tokery + Tony = {0}

Let w € G(L) and k(w) > 1. First of all it should be note that from
Ty = {0} follows T,,; = {0} for all ¢ = 1,2,...,k(L) — 1 , becouse in
opposite case there exists a vector z € C~1f(P, Q) for some iy, 1 <
ip < k(L) — 1, such that n(w)(L)z # 0. Then from the representation
L = w + @ one has contradiction 0 = n(L)z = m(w)z + m(@)z # 0. So,
T.:={0},i=1,2,.. k(L) -1, and T, ; # {0}, that’s why we have only
two cases for ¢ = k(L) :
T,.= {0} and then k(w) > k(L),

or
T,: # {0} and then k(w) = k(L),
both of them implies k(w) > k(L). O

LEMMA 3. Let Ly = [Ty 1)) be the carrier subspace of the compact
set Ty k) and k(L) > 1 . Then k(L) = k(L;). The proof of this lemma
is obtained easily from lemmas 1 and 2.

LEMMA 4. (expansion of orthogonal complement).

Let k(L) > 1 in the game (1.1). Then there exist mutually orthogonal
subspaces L; C L,i=1,2, ... s+ 1, such that

a)L=1Ly+ Ly+ -+ Ly, »

b) k‘(Ll) < k(Lg) < -0 < k'(Lg), k(Ls—H) = O,

¢) k(w) = k(L)) for every subspace w C L;,i =1.2,...,s,w # {0}.
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Proof. Put Ly = [Ty, gpy]- If Ly = L, then the lemma’s proof is finished
(s =1,L, = {0}). If Ly C L,L; # L, then for orthogonal complement
(L = L; +T) are possible only two cases :

k(Fl):O or k‘(F]) Z 1.

First case give us Ly = ['; and the proof of lemma is finished. In the
second case putting Ly = [TT, k(r,)] We get the representation

(21) [ = Lo+ 1.
Lemmas 2 and 3 and (2.1) implies

becouse if k(L) = k(L;), then in accordence with definition of number
k(L;) we get
(23)  w(L)CHT(P,Q) = m(L) TP, Q) # {0}
On other side L, is orthogonal to Ly = [Ty 1)}, €0 from lemma 3 one
has

(L) ML (P, Q) = {0},
that contradicts with (2.3). O

Repeating all arguments for I'; (see (2.1) and (2.2)) and using certain
induction, we get the fulfilment of lemma’s assertions a) and b).

Let us proof the assertion c).

Let w be a subspace of L and w # L,w # {0}. First we show that
k(w) > 1. If k(w) = 0, then from L; = w + & we have for all u € P and
vEQR

r(L)CH ™ f(,0) = 7(w) OB f(u,0) + w(@)CH " f (w,v)

(2.4) = W(Q)Cki_lf(u,v),

where k; = k(L;),i € J = {1,2, ..., s}, is orthogonal complement of w
in L.
Similarly (2.2) and inductively we can get the equality

(2.5) k(Li +Ty) = k(L), i€,
which with (2.4) implies

Tr, k(i) = U 7.‘,(Fi_l)cvlc(l‘i—l)* lf(u, ’U)

ue PweQ
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(2.6) = |J mL)C* ! flu,v) + w(THCH f(u, v)]
uEPYEQ

= |J mL)Ch f(u0) = m(@)CHF(PQ)
u€E PveQ

that is in contradiction with the definition of L; (L; = (T
and dim @ < dim L;).

Thus k(w) > 1 and according to the lemma 2 we get klw) > k.
Further, if k(w) > k; , then m(w)C*~! f(P, Q) = {0} in (2.4) and we get
one more (2.6) and the contradiction with the definition of L;. Lemma
4 is proved.

k(1))

=17

LEMMA 5. (uniqueness of the expansion of orthogonal complement).
The expansion a) of orthogonal complement L satisfying conditions
b) and c) of lemma 4 is unique.

Proof. From the proof of the lemma 4 we have
(2.7) L = Tr,_ k@), Uiy = L+ Ty, ield Tg=L.
Let there exists some different expansion of L :
(2.8) L=L)+Ly+..+L, +L, .,

satisfying conditions like b) and c) of lemma 4.
We shall show that

(29) L; = L:, k?(LI) =k = k(L;), s=m, t€J

Let i = 1 and let us prove that L, = L}, k(L,) = k(L}).
Put L = L, +Ty,1 = L] + I}, then from (2.5) we get

(2.10) ky =k(Ly) = k(L; +T,) = k(L1 + 1) = k(L)) = k].

Let L, C Lj and dim L; < dim L}, then

(2.11) Li=Li+L;, Lj#{o},

and by property c) of lemma 4 and (2.10) one has

(2.12) B(LY) = h(L}) = k(Ly) = ky.

On the other hand from (2.11) by using the fact L, = (T'1, k(1)) we have
T(L)CH (P Q) = {0},

so k(L}) > k(L1) = ki that give us the contradiction with (2.12).
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Let us assume that L} C L, and L] # L, then L, = L} + L, and
from the facts L, C Ly and L, # {0} by condition c) of lemma 4 we get
k(Ly) = k. From here and (2.5) and obvious relations

k(L) = ky < ky = k(D))

we get _ ~

ky =k@) =k(Li+T) =k(L) =& =k}
that contradicts with the inequality kj > k| (see b) of lemma 4). Thus,
we proved that Ly = L and k; = k{, hence (2.9) is true for i = 1. Let
now
(2.13) Li=L}, kij=k; for j=23,.,p—1
and let for the definiteness p < s < m.

We will prove now that
(2.14) L,=1L, and k,=k,
From (2.5) we get equalities
k(Lp+ ... 4 Lgy)) = K(Lp) = ky,

(2.15) k(L + .o+ Loy ) = k(Lp) = &,
and according to (2.13) we have
Lp+...+ Ley = L + .. +Lm;1>

hence (see (2.15)) k, = k. The equality L, = = L, is obtained easily by
full repeating the process for p=1.

For the complete proof of lemma we must show that s = m. Let us
assume s < m (the case s > m is considered analogously) respectively
with (2.13), then from (2.14) we get L,y = L, + ...+ L/, ., from here
and (2.5) we obtain the contradiction

0=Fk(Lsy1) = k(Lerl) = k;+1 Z
wich yields s = m. Lemma 5 is proved. a
LEMMA 6. (on a structure of orthogonal complement).
Let in the game (1.1) there exist subspaces L; C L,i € J = {1,2, ..., s},
satisfying the conditions
1) L;= [711‘1—1,]6(1‘141)]7 I'iy=1L;+ I';, i¢e J, Ty=L.
2) 1 < k(L) <k(Ly) <---<k(Ly), k() =0.
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Then
(2.16) k(w) = k(L;)

for arbitrary nonzero subspace w C L such thatw ¢ I';_) andw C I';,i €
J.

Proof. From condition 1) and lemma 4 using to pair T';_; and L;,7 € J,
we get

L=Li+Ly+-+L,+T,

(2.17) Triy ks = Tookey,  k(Lioa) = k(L)

Let ¢ € J be fixed and let w ¢ I';_; and w C T,.
For the fulfillment (2.16) enough to show the true of the inequality

(2.18) m(w)CHU (P, Q) # {0}
Really, (2.18) and lemma 2 implies
k:(w) Z k(Fi_l) — ]C(Ll) = ki

and 1 < k(w) < ki, from here we obtain k(w) = k;.
Let us proof (2.18). Let assume that left side of (2.18) is zero. Then
from representations

(2.19) i =Li+T,=w+w
and formula (2.5) we have
T(L)CH T F(P,Q) = m(@)CR T (P, Q),
and from here we get the strong inclusions (w ¢ I';_j,w C T;)
@wCL; or w>lL,.

If & C L, then from (2.19) we have L; C w and dim® < dimL; (w ¢
I';!), that contradicts with the definition of L; as the carrier subspace.
In the case w O L; (2.19) implies the conclusion w C I'; that contra-
dicts with a choice of w(w c T}!).
Thus (2.18) is proved and so, as we note above, (2.16) is true. Lemma
6 is completely proved. O
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COROLLARY 1. The function k(w),w € G(L), has the structure

ki, if wcli,w¢gTyiclJ
k(w) = S kipr, if wClyie J\{s},
0, if wcly,

i.e., it is discontinuous function.

3. Optimal evasion parameters

In this part on the base of orthogonal complement’s structure advan-
tage’s functions are defined and their properties are considered. Then by
using of function k(w) and advantage’s functions optimal evasion param-
eters are introduced.

Let X =G(L)x " X R"xPx PxQ, a=(wlyuv)elX,

Put

Ni(a) = (4, m(w)C7 ' fu,v) 1), «€X,

Ai{w) = max min max N;(a),
leD; ypeS(w) veQ

/\(w‘) = /\k(w)(w), k'(w) el,
where w € G(L), 1 ={1,2,...,n},D; =C*" ' f(P,Q),i€ I
DEFINITION 1. We will call the functions A;(w),? € I, the advantage’s
functions.

LEMMA 7. Functions N;(«a),¢ € I, are continuous with respect to o €
X and advantage’s functions achieve their least upper and greatest lower
bounds.

Proof. The continuity of N;(«) at the point ¢ ¢ X follows from the
inequality [9]

Ni(a) = Ni(awo) I<] ¥ =0 | (|1 +d) + (| o | +d)[[ L = o | +

@(w7w0)+ ' fi(ua U) - fi(uoi‘vo) ‘}7
where f;(u,v) = C*71 f(u,v),d > 0 is a constant.
Let us consider one of the advantage’s functions, for example, A, (w), %o
€ I. Since the operations of minimum and maximum on compacts save
the continuity property of functions, A;,(w) is continuous at the set G(L).
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Due to compactness of the space G(L) [12, p. 226 and established con-
tinuity we have the accessibility of bounds on G(L) for the function

Continuity and bounds accessibility for other advantage’s functions
are proved analogously.

Now we may introduce optimal evasion parameters for quasilinear
game (1.1).

Put for every i € |

F,={wcCL:k(w)=1i},

H; ={w e G(F) : dimw > i + 1, \i(w) > 0},
and H = |J H,.
i€l
DEFINITION 2. We will call a positive integer number kg, subspace
we C L and number Ny > 0 optimal evasion parameters in quasilinear
game (1.1) if
ko = ml]n{l . H; +# 0},
€

No = A
Y “%E;'{XO (w)a

dimwy = min{dimw : w € Arg max A w)},
UJE}IO

where A\(w) = Ay (w), Hy = Hy,.

4. Main result and example

THEOREM. Let for the game (1.1) the set H :£ (). Then there exist
optimal evasion parameters ensuring the possibility of evasion from every
initial position zg € R™\ M for all t > 0. In addition, the distances £(t)
and 7(t) from a point z(t) to M and L respectively satisfy the estimate

cEFlL+ )™ if & <4y,
AT+ ()™ if & > oy,

here ¢, §; and m are positive constants.

(4.1) £(t) > {
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Proof. Existence of optimal evasion parameters kg, Ny and w, follows
from nonemptity of H and lemmas 4-7. Denote m, = m(wp), So =
S(wc),WQ € H,.

Let the evasion game begins at the moment ¢t = 0 from the point z €
R"\ M and the pursuer choosed admissible control u(t) € P,0 < ¢ < 1.

Let Iy € Do = C*~! f(P, Q) be a vector such that

]VY — . . ,} k()—l ) _
0 ﬁg})ﬁlgr&aﬁ;{(u,ﬂoic’ fu,v) — L))

and let ¥ = ¥(z) € Sy be a "vector -direction”, for wich (dimwy >
ko+ 1,wp € Ho')

(4.2) < ¥(20),9(20,t) > > 0,t € [0, 1],
where
ko v k,
t t*o
t) = E — 7o C" —olo-
9(20,t) 2 V!”fo zp + ko!ﬂo 0

As follows from [7] the set

U Arg max((zo), mlC* f(u(s),v) — &)

5€(0,1]

contains mesurable function 9(s) € Q, s € [0, 1], wich may be choosed by
lexicographical way.
It is clear that for all s € [0, 1] we have

(4.3) (1h(20), mo[CFO™ f(u(s), B(s)) — loj) > Np.
Let the evader uses control function 4(s),s > 0, and z(¢) is the solution

of (1.1), corresponding «(t) and ©(¢) with initial condition 2(0) = z,. By
Couchy’s formula

2(t) = €%z + /e(tﬁs)("f(u(s),ﬁ(s))ds

and properties of wo, ko(7oC f(P, Q) = {0},7 =0, 1. ..., kg — 2)
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one has
(4.4)

by g)ko-1
moz(t) = g(zg,t)+/%[woCkowlf(u(s),17(,9))—7r010]d5+h0(t, 20),

here ho(zp,t) satisfies inequality
| h0(207 t) |S dl(l + 60 + nO)Tk0+l7t € [Oa 1]7

and & = £(0),m0 = n(0),d, > 0 is a constant.
Relations (4.2) - (4.4) imply ( if & < 1) the inequality

ko
(45) (rox(t), w(z0) > S0
Q-
for all t € [0, 61], 6, = GI(ZQ) = dgNo[l + 770}_].
The inequality (4.5) is main one in differential evasion games, becouse
it permits to proof easy avoiding of trajectory z(¢) from terminal set M
on the interval [0, ©,]. Really, (4.5) implies inequalities

| moz(t) 12 (moz2(t),v(20)) >0, te(0,0)],

wich mean that z(t) & M for all ¢ € [0,0,], i.e., local evasion process is
possible.

For the moments ¢ > ©,, setting 2; = 2(0,) and ¥ = ¥(2(0,)), we
can organize evasion process by using of control function 4(¢) € @ on the
length [0, ©,], where ©, = d3Ny[1 + 7(©;)]~" and so on.

J'_

+00
It is proved [11] that series > O, is divergence one, therefore evasion
p=1

is possible for all ¢ > 0.
The estimate (4.1) is obtained by standard way [1, 4, 5]. O

EXAMPLE. (L. S. Pontryagin’s control example ”with soft landing”).
The behaviours of the pursuer z and the evader y are described by the
equations

(4.2) T+ az =2pu, -+ Py =200,

where z,y,u,v belong to R”, |« [< 1, @ > 0,3 > 0, p and o are positive
numbers.

The game is considered to be finished if z = y and # = ¥ (conditions
of "soft landing”).
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After conversation to reduced coordinates

= sly=2) =g 8), =gl ),
the equation (4.2) are described by the system
z) = 23,
(4.3) Zp = —Gz + Bzs+0v—pu=Cz + flu, v),
23 = (320 — a2z + ov + pu,
where
e, =R Latd

T denotes the transposition,

C is (3v x 3v) - matrix.

Terminal set M = M; [\ M,, where My = {z: 21 =0}, My = {2 : 2, =
0} and their orthogonal complements L = {z : 23 == 0}, L, = {z : 2; =
23 =0} and Ly, = {z: zp = z3 = 0}.

Simple calculations show that (see lemmas 4.5)

k‘(L) = k(Ll) - 1, k‘(Lg) = 2, L = 1/1 + L2,
Ai{w) < o — p for every subspace w C L;,i = 1, 2.
Further,
Fi={weG():wC Lw¢ Ly},
F2 = {w < G(L) Tw C Lz,w 7£ {O}},
H1 = {w & G(F]) cdimw > 2,)\1(&1) > O},
Hy; = {w e G(F) : dimw > 3, Ap(w) > 0},
hence it is easy to show that Hy # 0 if v > 2,0 > p and H, # 0 if
v>z3,0>p.

Thus, conditions of the teorem are fulfilled if » > 2 and o > p and
optimal evasion parameters are equal :

ko =1,Ny =0 —p, wp is arbitrary two - dimensional subspace of L.

REMARK 1. According to previous papers’ results on evasion differ-

ential games (see for example [4-5]) the game (4.3) is evadable in one of
the following cases :

a)v>2,0>p, bv>3 o>p
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Our theorem of evasion rejects from consideration the case b) and
points to the algorithm of choice of optimal evasion parameters (case

a)).
REMARK 2. The obtained results could be generalize on the [ - evasion
problem [11] and nonlinear differential games [5-7].
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