• Title/Summary/Keyword: Parameter-scheduling

Search Result 87, Processing Time 0.027 seconds

PID control with parameter scheduling using fuzzy logic

  • Kwak, Jae-Hyuck;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.449-454
    • /
    • 1994
  • This paper describes new PID control methods based on the fuzzy logic. PID gains are retuned after evaluating control performances of transient responses in terms of performance features. The retuning procedure is based on fuzzy rules and reasoning accumulated from the knowledge of experts on PID gain scheduling. For the case that the retuned PID gains result in worse CLDR (characteristics of load disturbance rejection) than the initial gains, an on-line tuning scheme of the set-point weighting parameter is, proposed. This is based on the fact that the set-point weighting method efficiently reduce either overshoot or undershoot without any degradation of CLDR. The set-point weighting parameter is adjusted at each sampling instant by the fuzzy rules and reasoning. As a result, better control performances were achived in comparison with die controllers tuned by the Z-N (Ziegler-Nichols) parameter tuning formula or by the fixed set-point weighting parameter.

  • PDF

Optimal scheduling of multiproduct batch processes with various due date (다양한 납기일 형태에 따른 다제품 생산용 회분식 공정의 최적 생산계획)

  • 류준형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.844-847
    • /
    • 1997
  • In this paper, scheduling problem is dealt for the minimization of due date penalty for the customer order. Multiproduct batch processes have been dealt with for their suitability for high value added low volume products. Their scheduling problems take minimization of process operation for objective function, which is not enough to meet the customer satisfaction and the process efficiency simultaneously because of increasing requirement of fast adaptation for rapid changing market condition. So new target function has been suggested by other researches to meet two goals. Penalty function minimization is one of them. To present more precisely production scheduling, we develop new scheduling model with penalty function of earliness and tardiness We can find many real cases that penalty parameters are divergent by the difference between the completion time of operation and due date. That is to say, the penalty parameter values for the product change by the customer demand condition. If the order charges different value for due date, we can solve it with the due date period. The period means the time scope where penalty parameter value is 0. If we make use of the due date period, the optimal sequence of our model is not always same with that of fixed due date point. And if every product have due date period, due date of them are overlapped which needs optimization for the maximum profit and minimum penalty. Due date period extension can be enlarged to makespan minimization if every product has the same abundant due date period and same penalty parameter. We solve this new scheduling model by simulated annealing method. We also develop the program, which can calculate the optimal sequence and display the Gantt chart showing the unit progress and time allocation only with processing data.

  • PDF

Distributed opportunistic packet scheduling for wireless ad-hoc network (무선 에드혹 네트워크에서 분산화된 opportunistic 패킷스케줄링)

  • Park, Hyung-Kun;Yu, Yun-Seop
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.204-206
    • /
    • 2009
  • Opportunistic scheduling is one of the important techniques to maximize multiuser diversity gain. In this paper, we propose a distributed opportunistic scheduling scheme for ad-hoc network. In the proposed distributed scheduling scheme, each receiver estimates channel condition and calculates independently its own priority with probabilistic manner, which can reduce excessive probing overhead required to gather the channel conditions of all receivers. We evaluate the proposed scheduling using extensive simulation and simulation results show that proposed scheduling obtains higher network throughput than conventional scheduling schemes and has a flexibility to control the fairness and throughput by controlling the system parameter.

  • PDF

QFT Parameter-Scheduling Control Design for Linear Time- varying Systems Based on RBF Networks

  • Park, Jae-Weon;Yoo, Wan-Suk;Lee, Suk;Im, Ki-Hong;Park, Jin-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.484-491
    • /
    • 2003
  • For most of linear time-varying (LTV) systems, it is difficult to design time-varying controllers in analytic way. Accordingly, by approximating LTV systems as uncertain linear time-invariant, control design approaches such as robust control have been applied to the resulting uncertain LTI systems. In particular, a robust control method such as quantitative feedback theory (QFT) has an advantage of guaranteeing the frozen-time stability and the performance specification against plant parameter uncertainties. However, if these methods are applied to the approximated linear. time-invariant (LTI) plants with large uncertainty, the resulting control law becomes complicated and also may not become ineffective with faster dynamic behavior. In this paper, as a method to enhance the fast dynamic performance of LTV systems with bounded time-varying parameters, the approximated uncertainty of time-varying parameters are reduced by the proposed QFT parameter-scheduling control design based on radial basis function (RBF) networks.

Distributed Multimedia Scheduling in the Cloud

  • Zheng, Mengting;Wang, Wei
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.143-152
    • /
    • 2015
  • Multimedia services in the cloud have become a popular trend in the big data environment. However, how to efficiently schedule a large number of multimedia services in the cloud is still an open and challengeable problem. Current cloud-based scheduling algorithms exist the following problems: 1) the content of the multimedia is ignored, and 2) the cloud platform is a known parameter, which makes current solutions are difficult to utilize practically. To resolve the above issues completely, in this work, we propose a novel distributed multimedia scheduling to satisfy the objectives: 1) Develop a general cloud-based multimedia scheduling model which is able to apply to different multimedia applications and service platforms; 2) Design a distributed scheduling algorithm in which each user makes a decision based on its local information without knowing the others' information; 3) The computational complexity of the proposed scheduling algorithm is low and it is asymptotically optimal in any case. Numerous simulations have demonstrated that the proposed scheduling can work well in all the cloud service environments.

Distributed Proportional Fair Scheduling for Wireless LANs (무선 LAN을 위한 분산화된 비례공정 스케줄링)

  • Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2262-2264
    • /
    • 2007
  • In this paper, we propose a distributed opportunistic scheduling scheme for wireless LAN network. Proportional fair scheduling is one of the opportunistic scheduling schemes and used for centralized networks, whereas we design distributed proportional fair scheduling (DPFS). In the proposed DPFS scheme, each receiver estimates channel condition and calculates independently its own priority with probabilistic manner, which can reduce excessive probing overhead required to gather the channel conditions of all receivers. We evaluate the proposed DPFS using extensive simulation and simulation results show that DPFS obtains up to 23% higher throughput than conventional scheduling schemes and has a flexibility to control the fairness and throughput by controlling the system parameter.

A Study on Low Power Force-Directed scheduling for Optimal module selection Architecture Synthesis (최적 모듈 선택 아키텍쳐 합성을 위한 저전력 Force-Directed 스케쥴링에 관한 연구)

  • Choi Ji-young;Kim Hi-seok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.459-462
    • /
    • 2004
  • In this paper, we present a reducing power consumption of a scheduling for module selection under the time constraint. A a reducing power consumption of a scheduling for module selection under the time constraint execute scheduling and allocation for considering the switching activity. The focus scheduling of this phase adopt Force-Directed Scheduling for low power to existed Force-Directed Scheduling. and it constructs the module selection RT library by in account consideration the mutual correlation of parameters in which the power and the area and delay. when it is, in this paper we formulate the module selection method as a multi-objective optimization and propose a branch and bound approach to explore the large design space of module selection. Therefore, the optimal module selection method proposed to consider power, area, delay parameter at the same time. The comparison experiment analyzed a point of difference between the existed FDS algorithm and a new FDS_RPC algorithm.

  • PDF

Extended Proportional Fair Scheduling for Statistical QoS Guarantee in Wireless Networks

  • Lee, Neung-Hyung;Choi, Jin-Ghoo;Bahk, Sae-Woong
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.346-357
    • /
    • 2010
  • Opportunistic scheduling provides the capability of resource management in wireless networks by taking advantage of multiuser diversity and by allowing delay variation in delivering data packets. It generally aims to maximize system throughput or guarantee fairness and quality of service (QoS) requirements. In this paper, we develop an extended proportional fair (PF) scheduling policy that can statistically guarantee three kinds of QoS. The scheduling policy is derived by solving the optimization problems in an ideal system according to QoS constraints. We prove that the practical version of the scheduling policy is optimal in opportunistic scheduling systems. As each scheduling policy has some parameters, we also consider practical parameter adaptation algorithms that require low implementation complexity and show their convergences mathematically. Through simulations, we confirm that our proposed schedulers show good fairness performance in addition to guaranteeing each user's QoS requirements.

Multi-thread Scheduling for the Network Processor (네트워크 프로세서를 위한 다중 쓰레드 스케줄링)

  • Yim, Kang-Bin;Park, Jun-Ku;Jung, Gi-Hyun;Choi, Kyung-Hee
    • The KIPS Transactions:PartC
    • /
    • v.11C no.3
    • /
    • pp.337-344
    • /
    • 2004
  • In this paper, we propose a thread scheduling algorithm for faster packet processing on the network processors with multithreaded multiprocessor architecture. To implement the proposed algorithm. we derived several basic parameters related to the thread scheduling and included a new parameter representing the packet contents and the multithreaded architecture. Through the empirical study using a simulator, we proved the proposed scheduling algorithm provides better throughput and load balancing compared to the general thread scheduling algorithm.

A Study On The fault-Tolerant Task Scheduling Strategy of Real-Time System (실-시간 시스템의 결함 허용 태스크 스케줄링 전략에 관한 연구)

  • 한상섭;이정석;박영수;이재훈;이기서
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.324-329
    • /
    • 2000
  • Object of a real-time system, that performs exact information based on the real-time constraint. is required for an improvement of high reliability. The fault-tolerant task scheduling strategy of multiprocessor as using a distributed memory based on a hardware redundancy can be improved into a high reliability of the real-time system. Therefore, this paper is shown to analyze the reliability of the system by using the transfer parameter and make the modeling in reference to a minimization of the fault-tolerant task scheduling strategy which uses a percentage of task missing and deadline parameter based on optimization task size.

  • PDF