• 제목/요약/키워드: Parameter varying controller

검색결과 144건 처리시간 0.03초

H$\infty$ controller design for input-saturated linear systems

  • Choi, Ki-Hoon;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.75.2-75
    • /
    • 2001
  • In this paper, we provide the technique of H$\infty$ controller design algorithm for input-saturated linear systems using a linear parameter varying(LPV) framework. The LPV controller with parameter dependent dynamic state feedback controller concept guarantees the asymtotic stability and H$\infty$ norm bound within prescribed level v using the saturation nonlinearity as scheduling parameters. Especially, the sufficient conditions for the existence of H$\infty$ controller are formulated in terms of linear matrix inequalities(LMIs) that can be solved very efficiently.

  • PDF

시변시간지연을 가지는 네트워크기반 제어시스템의 H2 제어기 설계 (H2 controller Design for Networked Contorl Systems with Time-Varying Delay)

  • 이홍희;노영식;강희준;서영수
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1196-1201
    • /
    • 2004
  • H₂ controller is proposed for networked control systems with time-varying delay. The time-varying network delay is assumed to be unknown, but its lower and upper bounds are assumed to be known. The time-varying delay is treated like a parameter variation and robust control technique is used to deal with the time-varying delay. The proposed controller can be computed by solving linear matrix inequalities. Through numerical simulations, the proposed controller is verified.

비선형 퍼지 PID 제어기의 성능 개선에 관한 연구 (A Study on the Performance Improvement of a Nonlinear Fuzzy PID Controller)

  • 김인환;이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.852-861
    • /
    • 2003
  • In this paper, in order to improve the disadvantages of the fixed design-parameter fuzzy PID controller. a new fuzzy PID controller named a variable design-parameter fuzzy PID controller is suggested. The main characteristic of the suggested controller is to adjust design-parameters of the controller by comparing magnitudes between fuzzy controller inputs at each sampling time when controller inputs are measured. As a result. all fuzzy input partitioned spaces converge within a time-varying normalization scale. and the resultant PID control action can always be applied precisely regardless of operating input magnitudes. In order to verify the effectiveness of the suggested controller. several a computer simulations for a nonlinear system are executed and the control parameters of the variable design-parameter fuzzy PID controller are throughly analyzed.

Half Bridge LLC 공진 컨버터를 이용한 파워 LED의 정전류 적응제어기 (Adaptive Current Control of Power LEDs Using Half-Bridge LLC Resonant Converter)

  • 김응석;김영태
    • 조명전기설비학회논문지
    • /
    • 제27권4호
    • /
    • pp.48-53
    • /
    • 2013
  • In general, the LLC resonant topology consists of three stages as; square wave generator, resonant network, and rectifier network. LLC resonant converter has the time slowly varying parameters. However, the power LEDs as the load of LLC converter can be regarded as fast time varying parameters. In this paper, the mathematical model of half-bridge resonant converter including with the power LEDs is introduced for the current controller design model. Using this controller design model, the parameter adaptive output feedback controller will be designed to control the power LEDs current. In order to show the validities of the proposed model, the parameter adaptive output feedback controller, the experimental investigation will be presented.

시변 슬라이딩 평면을 이용한 로봇 제어기의 설계 (Design of Robot Controller using Time-Varying Sliding Surface)

  • 이주장
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.359-361
    • /
    • 1993
  • In this paper, a variable structure controller with time-varying sliding surface is proposed for robot manipulators. The proposed time-varying sliding surface ensures the existence of sliding mode from an initial state, while the contentional sliding surface cannot achieve the robust performance against parameter variations and disturbances before the sliding mode occurs. Therefore, error transient can be fully prescribed in advance for all time. Furthermore, it is shown that the overall system is globally exponetially stable. The efficiency of the proposed method for the trajectory tracking has been demonstrated by simulations.

  • PDF

Stability and Robust H Control for Time-Delayed Systems with Parameter Uncertainties and Stochastic Disturbances

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Lee, Sang-Moon;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.200-214
    • /
    • 2016
  • This paper investigates the problem of stability analysis and robust H controller for time-delayed systems with parameter uncertainties and stochastic disturbances. It is assumed parameter uncertainties are norm bounded and mean and variance for disturbances of them are known. Firstly, by constructing a newly augmented Lyapunov-Krasovskii functional, a stability criterion for nominal systems with time-varying delays is derived in terms of linear matrix inequalities (LMIs). Secondly, based on the result of stability analysis, a new controller design method is proposed for the nominal form of the systems. Finally, the proposed method is extended to the problem of robust H controller design for a time-delayed system with parameter uncertainties and stochastic disturbances. To show the validity and effectiveness of the presented criteria, three examples are included.

조정가능한 파라미터를 가지는 $H^{\infty}$출력궤환 제어기를 이용한 자승적 안정화 (Quadratic Stabilization by $H^{\infty}$ Output Feedback Controllers with Adjustable Parameters)

  • 강성규;이갑래;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.101-104
    • /
    • 1997
  • In this paper, we deal with a quadratic stabilization by $H^{\infty}$ output feedback controllers with adjustable parameters. The designed controller contains a contractive time-varying gain which can be used to adjust the responses of the resulting closed-loop system. The free parameter expressed as time-varying gain is chosen so that a Lyapunov function of the closed-loop system descends as fast as possible. A numerical example is given to show the validity of proposed method..

  • PDF

매개변수 변동을 갖는 2관성 시스템의 강건제어 (Robust Control of Two Mass Spring System with Parameter Variations)

  • 조도현;이종용;이상효
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.729-737
    • /
    • 1998
  • In this paper, using $\mu$ synthesis algorithm with structured uncertainty, we design controller and apply it for the Two-Inertia resonance(TMS: Two Mass Spring) system. The TMS system is one of the simplest models which generate a torsional vibration. In this system, it is required to design a controller achieving the control performance while suppressing the torsional vibration. Furthermore, when vibration frequency for the system is varying by reason of parameter variations, we should consider parameter variations in controller design. Then, we design two other controller schemes of the PI controller and the standard $H_{\infty}$ controller and compare these controllers with the controller designed by the $\mu$ synthesis robust control method by using simulations and experiments.

  • PDF

Design of Autonomous Cruise Controller with Linear Time Varying Model

  • Chang, Hyuk-Jun;Yoon, Tae Kyun;Lee, Hwi Chan;Yoon, Myung Joon;Moon, Chanwoo;Ahn, Hyun-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2162-2169
    • /
    • 2015
  • Cruise control is a technology for automatically maintaining a steady speed of vehicle as set by the driver via controlling throttle valve and brake of vehicle. In this paper we investigate cruise controller design method with consideration for distance to vehicle ahead. We employ linear time varying (LTV) model to describe longitudinal vehicle dynamic motion. With this LTV system we approximately model the nonlinear dynamics of vehicle speed by frequent update of the system parameters. In addition we reformulate the LTV system by transforming distance to leading vehicle into variation of system parameters of the model. Note that in conventional control problem formulation this distance is considered as disturbance which should be rejected. Consequently a controller can be designed by pole placement at each instance of parameter update, based on the linear model with the present system parameters. The validity of this design method is examined by simulation study.

Robust $H_{\infty}$ Control of Uncertain Descriptor Systems With Time-Varying Delays

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.199-204
    • /
    • 2002
  • This paper is concerned with H$_{\infty}$ controller design methods for descriptor systems with and without time-varying delays in state and control input. The sufficient condition for the existence of an H$_{\infty}$ controller and the controller design method are presented by linear matrix inequality (LMI), singular value decomposition, Schur complements, and changes of variables. Since the obtained sufficient condition can be changed to an LMI form by proper manipulations, all solutions including controller gain can be obtained at the same time. Moreover, it is shown that robust H$_{\infty}$ controller design problem for parameter uncertain descriptor systems with time-varying delays in state and control input can be solvable using the proposed method.