• Title/Summary/Keyword: Parameter perturbation

Search Result 232, Processing Time 0.025 seconds

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.

Statistical Analysis of Random Parameter Systems with Perturbation Method (퍼터베이션 방법을 이용한 랜덤 파라미터 시스템의 통계적 해석)

  • 김영균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.2
    • /
    • pp.1-6
    • /
    • 1982
  • This paper reviews and describes some applications of perturbation theory in the practical analysis of linear systems which involve random parameters. Statistical measures of the system outputs are derived in terms of statistical measures of the system parameters and inputs (i.e., in the way of perturbed linear operator equations). Perturbed state transition matrix is also derived. With simple first-order and second-order linear system models, we compare the accuracy of perturbation results with the exact ones. And the convergence of perturbation series is also investigated.

  • PDF

Analysis of Fiber Nonlinearities by Perturbation Method

  • Lee Jong-Hyung;Han Dae-Hyun;Choi Byeong-Yoon
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • The perturbation approach is applied to solve the nonlinear Schrodinger equation, and its valid range has been determined by comparing with the results of the split-step Fourier method over a wide range of parameter values. With γ= 2㎞/sup -1/mW/sup -1/, the critical distance for the first order perturbation approach is estimated to be(equation omitted). The critical distance, Z/sub c/, is defined as the distance at which the normalized square deviation compared to the split-step Fourier method reaches 10/sup -3/. Including the second order perturbation will increase Z/sub c/ more than a factor of two, but the increased computation load makes the perturbation approach less attractive. In addition, it is shown mathematically that the perturbation approach is equivalent to the Volterra series approach, which can be used to design a nonlinear equalizer (or compensator). Finally, the perturbation approach is applied to obtain the sinusoidal response of the fiber, and its range of validity has been studied.

Adaptive Control of CNC Boring Machine by Application of the Variance Perturbation Method (분산 섭동법 에 의한 CNC보오링 머시인 의 적응제어)

  • 이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 1984
  • A recursive parameter estimation method is applied to spindle deflection model during boring process. The spindle infeed rate is then determined to preserve the diametral tolerance of bore. This estimation method is further extended to adaptive control by application of the variance perturbation method. The results of computer simulation attest that the proposed method renders the optimal cutting conditions, maintaining the diametral accuracy of bore, regardless of parameter fluctuations. The proposed method necessitating only post-process measurements features that initialization of parameter guess values in simple, a priori knowledge on parameter variations is not needed and the accurate estimation of optimal spindle infeed rate is obtained, even if the parameter estimation may be poor.

Sliding Mode Control with RLSN Predictor-Based Perturbation Estimation (RLSN 예측기 기반 섭동 추정기를 갖는 슬라이딩 모드 제어)

  • Nam Yun-Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.880-888
    • /
    • 2006
  • This paper presents the sliding mode control with the perturbation estimator for a nonlinear control system in the presence of perturbations including external disturbances, unpredictable parameter variations, ana unstructured dynamics. The proposed perturbation estimator is based on the Recursive Linear Smoothed Newton predictive algorithm so that it is effective to attenuate an undesired noise in high frequency band and to predict the present perturbation signal from the previous ones. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE) introduced by Elmali and Olgac, the control algorithm proposed in this study can offer better tracking control performances and more feasible estimation characteristics. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a simple two-link robot manipulator subject to velocity feedback signals including white noises.

SPLINE DIFFERENCE SCHEME FOR TWO-PARAMETER SINGULARLY PERTURBED PARTIAL DIFFERENTIAL EQUATIONS

  • Zahra, W.K.;El-Azab, M.S.;Mhlawy, Ashraf M. El
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.185-201
    • /
    • 2014
  • In this paper, we construct a numerical method to solve singularly perturbed one-dimensional parabolic convection-diffusion problems. We use Euler method with uniform step size for temporal discretization and exponential-spline scheme on spatial uniform mesh of Shishkin type for full discretization. We show that the resulting method is uniformly convergent with respect to diffusion parameter. An extensive amount of analysis has been carried out to prove the uniform convergence with respect to the singular perturbation parameter. The obtained numerical results show that the method is efficient, stable and reliable for solving convection-diffusion problem accurately even involving diffusion parameter.

Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions

  • Ebrahimi, Farzad;Shaghaghi, Gholam Reza
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1087-1109
    • /
    • 2016
  • In this manuscript, the small scale and thermal effects on vibration behavior of preloaded nanobeams with non-ideal boundary conditions are investigated. The boundary conditions are assumed to allow small deflections and moments and the concept of non-ideal boundary conditions is applied to the nonlocal beam problem. Governing equations are derived through Hamilton's principle and then are solved applying Lindstedt-Poincare technique to derive fundamental natural frequencies. The good agreement between the results of this research and those available in literature validated the presented approach. The influence of various parameters including nonlocal parameter, thermal effect, perturbation parameter, aspect ratio and pre-stress load on free vibration behavior of the nanobeams are discussed in details.

The Stability and Variability based on Vowels in Voice Quality Analysis (음질 분석에 있어서 모음에 따른 안정성과 변이성)

  • Choi, Seong Hee;Choi, Chul-Hee
    • Phonetics and Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.79-86
    • /
    • 2015
  • This study explored the vowel effect on acoustic perturbation measures in voice quality analysis. For this study, the perturbation parameters (%jitter, %shimmer) and noise parameter (SNR) were measured with 7 Korean vowels (/a/, /ɛ/, /i/, /o/, /u/, /ɯ/, /ʌ/) using CSpeech with 50 Korean normal young adults (24 males and 26 females). A significant vowel effect was found only in %shimmer and in particular, low-back /a/vowel was significantly different from other vowels in %shimmer. The least perturbation and noise were exhibited on high-back /ɯ/ and /o/ vowel, respectively. Based on tongue height, a significant higher %shimmer was demonstrated on low vowels than high vowels. In addition, back vowels in tongue advancement and rounded vowels in lip rounding showed significantly less perturbation and noise. The least variability of perturbation and noise within individuals was demonstrated on the vowel /i/ in three repeated measures. However, there was no significant difference among 3 token measures in single session among vowels tested except the vowel /o/. Consequently, the vowel /a/ commonly used in acoustic perturbation measures exhibited higher perturbation and noise whereas higher stability and less variability were demonstrated on the high-back vowel /u/. These results suggested that the Korean high-back vowel /u/ can be more appropriate and reliable for perturbation acoustic measures.

Application of Perturbation Estimation using Fractional-Order Hold Technique to Sliding Mode Control (Fractional-Order Hold기법을 이용한 섭동 추정기의 슬라이딩 모드 제어에 적용)

  • Nam Yun Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.121-128
    • /
    • 2006
  • This paper deals with the application of enhanced perturbation estimation (SMCEPE) to sliding mode control of a dynamic system in the presence of perturbations including external disturbances, unpredictable parameter variations, and unstructured dynamics. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE), the proposed one can offer robust control performances under serious control conditions, such as fast dynamic perturbations and slow loop-closure speeds, without a priori knowledge on upper bounds of perturbations. The perturbation estimator in SHCEPE also has more adaptability owing to the fractional-order hold technique. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a two-link robot manipulator.

Perturbation analysis of localized deformation by dynamic strain aging (Dynamic strain aging 에 의한 국소변형의 perturbation analysis)

  • Yang, Seung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.96-100
    • /
    • 2003
  • In the tensile loading of sheet metals made from polycrystalline aluminum alloys, a single deformation band appears inclined to the elongation axis in the early stage of plastic deformation, and symmetric double bands are observed in the later stage. This character of the localized deformation bands has been analyzed by a perturbation method. Macroscopic slip modes composed of slip planes and slip directions were assumed to describe the tensile and shear strains. Along time integration path, the value of the perturbation growth parameter was checked to find at which angle to the elongation axis the localized deformation bands are generated. It was shown that the mode of the localized deformation is related to asymmetry of material property.

  • PDF