• 제목/요약/키워드: Parameter design

Search Result 4,999, Processing Time 0.04 seconds

Performance improvement of a vehicle suspension by sensitivity analysis (민간도해석에 의한 자동차 현가장치의 성능개선에 관한 연구)

  • Song, Chuck-Gee;Park, Ho;Oh, Jae-Eung;Yum, Sung-Ha
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1464-1473
    • /
    • 1990
  • Optimal design parameters are estimated from the sensitivity function and performance index variation. Suspension design modification for performance improvement and basic materials for practical applications are presented. The linear quarter model of a vehicle suspension is analyzed in order to represent the utilities of sensitivity analysis, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. As an investigation results of sensitivity function for the vibrational amplitude of sprung mass to road profile input, it is shown that the most sensitive parameters are the suspension damping and the suspension stiffness. In order to identify the effects of these two parameters to the performance of suspension system, the performance index variation according to the changes of parameters is considered and then optimal design parameters are determined. It is verified that the system response is improved noticeably in the both of frequency and time domain after the design modification with the optimal parameters.

Dual EKF-Based State and Parameter Estimator for a LiFePO4 Battery Cell

  • Pavkovic, Danijel;Krznar, Matija;Komljenovic, Ante;Hrgetic, Mario;Zorc, Davor
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.398-410
    • /
    • 2017
  • This work presents the design of a dual extended Kalman filter (EKF) as a state/parameter estimator suitable for adaptive state-of-charge (SoC) estimation of an automotive lithium-iron-phosphate ($LiFePO_4$) cell. The design of both estimators is based on an experimentally identified, lumped-parameter equivalent battery electrical circuit model. In the proposed estimation scheme, the parameter estimator has been used to adapt the SoC EKF-based estimator, which may be sensitive to nonlinear map errors of battery parameters. A suitable weighting scheme has also been proposed to achieve a smooth transition between the parameter estimator-based adaptation and internal model within the SoC estimator. The effectiveness of the proposed SoC and parameter estimators, as well as the combined dual estimator, has been verified through computer simulations on the developed battery model subject to New European Driving Cycle (NEDC) related operating regimes.

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.

An Implementation of an Initial Design System for an Excavator Front Group with an Intelligent CAD Module (지능형 CAD 모듈을 이용한 굴삭기 프론트 초기 설계 시스템 구축)

  • Ju, Su-Suk;Bae, Il-Ju;Lee, Soo-Hong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.6
    • /
    • pp.405-412
    • /
    • 2007
  • It's difficult for manufacturers to derive a new design from the demands of consumers as quickly as possible and a designer carries out design operation using insufficient resources in initial design. To carry out initial design process efficiently for an excavator front group, it is necessary for a designer to manage lots of parameter with an existing knowledge or with in-house know-how and develop function module that calculates working range and excavator force. By doing so, it will bring up the optimized values of parameters based on the DOE in the early design stage. In this paper, a new approach to improve the process with optimized parameters is proposed to reduce a product development time of the excavator front design.

Thrust Analysis of Linear Synchronous Reluctance motor according to Design Parameters (직선형 동기 릴럭턴스 전동기의 설계변수에 따른 추력 특성 해석)

  • Jang, Seok-Myeong;Park, Ji-Hoon;Kwon, Jeong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.89-91
    • /
    • 2004
  • This paper deals with thrust characteristic by design parameter of linear synchronous reluctance motor(LSynRM). Mover of LSynRM used stator of linear induction machine. Design parameter being teeth width, teeth depth, airgap and displacement, we analyzed thrust characteristic on singleness or complex case. Also, we presented thrust characteristic using finite element method.

  • PDF

Mixed $H^2/H^\infty$ Controller Design with Regional Pole Placements for Underwater Vehicle (수중운동체의 극점 배치를 갖는 혼합 $H^2/H^\infty$ 제어기 설계)

  • 조용철;김종해박홍배
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.219-222
    • /
    • 1998
  • This paper presents the Mixed H2/H$\infty$ controller design method with the regional pole placements for underwater vehicle. Since the small and light underwater vehicle is sensitive to disturbances and parameter uncertainties, we design the controller which guarantees robustness against time-delays, parameter uncertainties and disturbances. The LMI(linear matrix inequality) formulations for pole placements in specific regions and H2 and H$\infty$ performances are reviewed. The desired controller can be obtained by solving these LMIs.

  • PDF

Model Reference Adaptive Control for Linear System with Improved Convergence Rate-parameter Adaptation Method (선형시스템을 위한 개선된 수렴속도를 갖는 기준모델 적응제어)

  • Lim, Kye-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.884-893
    • /
    • 1988
  • Adaptive controllers for linear unknown coefficient system, that is corrupted by disturbance, are designed by parameter adaptation model reference adaptive control(MRAC). This design is stemmed from the Lyapunov direct method. To reduce the model following error and to improve the convergence rate of the design, an indirect-suboptimal control law is derived. Proper compensation for the effects of time-varying coefficients and plant disturbance are suggested. In the design procedure no complete identification of unknown coefficients are required.

  • PDF

Robust Guaranteed Cost Filtering for Uncertain Systems with Time-Varying Delay Via LMI Approach

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2001
  • In this paper, we consider the guaranteed cost filtering design method for time-varying delay system with parameter uncertainties by LMI(Linear Matrix Inequality) approach. The objective is to design a stable guaranteed cost filter which minimizes the guaranteed cost fo the closed loop systems in filtering error dynamics. The sufficient conditions for the existence of filter, the guaranteed cost filter design method, and th guaranteed cost upper bound are proposed by LMI technique in terms of all finding variables. Finally, we give an example to check the validity of the proposed method.

  • PDF

EVOLUTIONARY DESIGN OF NO SPIN DIFFERENTIAL MODELS FOR OFF-ROAD VEHICLES USING THE AXIOMATIC APPROACH

  • Pyun, Y.S;Jang, Y.D.;Cho, I.H.;Park, J.H.;Combs, A.;Lee, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.795-801
    • /
    • 2006
  • A No Spin Differential (NSD) design has been improved from evaluation of two NSD models utilizing the axiomatic approach. New design parameters of the second level are developed to satisfy the independence axiom. The design matrices are determined to decouple the relationship between design parameters and process parameters. The values of process parameters are then determined to optimize and improve the NSD design. Consequently a unique and evolutionary NSD design is achieved with the aid of the axiomatic approach.

A Triangularization Algorithm Solving for the Complex Design with Precedence Constraints and IDEF3 Modeling in Concurrent Engineering (전제조건과 IDEF3를 응용한 동시공학환경에서의 복합설계)

  • Cho, Moon-Soo;Lim, Tae-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.742-752
    • /
    • 2009
  • Engineering design involves the specification of many variables that define a product, how it is made, and how it behaves applied to computer, communication and control fields. Before some variables can be determined, other variables must first be known or assumed. This fact implies a precedence order of the variables, and of the tasks of determining these variables consequently. Moreover, design of complex systems may involve a large number of design activities. In this paper, the activity-activity incidence matrix is considered as a representation of design activity analysis which mainly focuses on the precedence constraint with an object of doing IDEF3 in process-centered view. In order to analyze the activity-activity incidence matrix, a heuristic algorithm is proposed, which transforms an activity-activity, parameter-formula, and parameter-parameter incidence matrix into a lower triangular form. The analysis of the structured matrices can not only significantly reduce the overall project complexity by reorganizing few critical tasks in practice, but also aims at obtaining shorter times considering the solution structure by exploring concurrency.