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Abstract- Adaptive controllers for linear unknown coefficient system, that is corrupted by disturbance,
are designed by parameter adaptation model reference adaptive control( MRAC). This design is stemmed
from the Lyapunov direct method. To reduce the model following error and to improve the convergence
rate of the design, an indirect-suboptimal control law is derived. Proper compensation for the effects
of time-varying coefficients and plant disturbance are suggested. In the design procedure no complete
identification of unknown coefficients are required.

1. Introduction

A major part of the adaptive control schemes are
concerned around model reference adaptive control
(MRAC). This method is extensively used by sever-
al researchers in conjunction with various applica-
tions. There are a number of ways, as indicated in

*E oA H o SREEERT LR H - T
% BFEI1988F 5H 108
1 & & I 19889 108 251

884

2), 3), M~20),

2. 2%, that MRAC
can be set for an application, Some of these schemes

the list of references,

have been actually developed from stability point
of view. In any event the stability analyses of these
designs must thoroughly be reviewed. The Lyapunov
direct method and the Popov hyperstability method
are perhaps the most widely used approaches to
analyze the stability issues of an MRAC design.
Since the MRAC method have been extensively used
as an analytical tool to design various controllers
from the stability point of view and based on the



TEBE R 374 1258 1988 128

Lyapunov direct method, therefore it will be con-
cerned with the design aspect of the controller, That
design will become stable in the sense of Lyapunov.
The interesting feature of the applications of the
Lyapunov method in MRAC design is that it also
enables us to have a measure of convergence rate
of the adaptive scheme for analysis”, although this
task is not trivial, Such design will find many in-
teresting applications®. One contribution of this
paper is to solve, although indirectly, for an optimal
measure of the convergence rate of the adaptive
schemes that are designed based on the Lyapunov
direct method. These controllers have developed
with applications of adaptive control theory to robot

#~11. The results are, howe-

manipulator systems in
ver, general enough to be used in a number of other
dynamical systems,

Before presenting the results, two different methods
of parameter adaptation and signal synthesis adap-
tation are stated. In parameter adaptation method,
feedforward and / or feedback gain matrices are ad-
justed so as to reduce the generalized error between
the plant and the corresponding reference model. This

method, in general, assures asympototic stability® ™,

but this method requires perfect model matching for-

13) -

asymptotic stability'; direct adjustability and mat-
chability of parameters™, In this paper, parameter
adaptation method is studied to improve the system
performance. Compensation against the effects of
time- varying coefficients and system uncertainties
are suggested.

The organization of this paper is as follows. In
Section 2, the problem statement is presented. In
Section 3, parameter adaptation MRAC based on
the Lyapunov direct method and without identifica-
tion of unknown coefficients is developed. Conclusions

are deferred to Section 4.
2. Problem Statement

Consider a plant which has unknown time-var-

ying cofficients as follows,
P x,(t) =AL(t)x,(t) + B, () ult) +v(t) (1)

where Ap(t) € R™, Bo(t) € R™ are time-varying

(o)
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unknown coefficient matrices, such that the piar
(Ap, Bp) is completely controllable for n2r: x(t)
€ R" is directly measurable state vector: u(t) e R"
is the adaptive control input vector to be adjusted
by certain adaptive mechanism described in the
sequel: and v(t)€R" is uncertainty vector repre-
senting unknown additive environmental‘disturbance
such that

Iv(t) F =1 v(t) | maze o,

where | - || represents Euclidean norm, and sub-

script max is maximum value of the norm,

The reference model for the above plant is desc-
ribed by

M xn(t) =An(t) xn(t) +Ba(t)w(t), (2)

where A € R™™, B, € R™ are constant matrices
such that the pair (Ap, Bm) is completely control-
lable, and Ap is hurwitzian matrix; xnp(t) €R"
is the state vector: and w(t) €RT is the reference
input vector such that

H W(t) ” = ” W(t) ” maxégw

The objective of this study is to design adaptive
controller to force the state of the plant (1) to follow
that of the reference model (2). Furthermore, this
design will result in fast-converging error between
the above two states, These problems are addressed
in parameter adaptation method which is stemming
from the Lyapunov direct method.

3. Parameter Adaptation Method

3.1 Introduction

In this section, a plant that has following proper-
ties is considered. Study of this properties has or-
ganized with the author’s research in design of con-
trollers for mechanical manipulators, These dyna-

mical systems enjoy special properties that are the
motivating factors in development of the present

paper. Suppose Bp=[BTp, B",]T, where B, € R
™ and Bp, € R, If B, were a null matrix and
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Bp=BT;, >0, then this would have been correspond
to the dynamic equation of a mechanical manipula-
tor? 19 In thelater case the uncertainty vector v
is regarded as v=[vT, v%,]T with v;= 0,,; €R"T
and v, ¢ R".

Employing adaptive feedback gains K € R™" and
H € R™ to control plant as that of Fig. 1, perfect
model matching can be achieved when K=K and
H=H provided that v(t)=0 and 1s=0.Here K:B:,

(Am—Ap) and H=By' B.n. The superscript’ denotes
the left Penrose pseudo-inverse.

ADAPTATION

MECHANISM 1—}

Fig.1 Parameter adaptation MRAC.

The plant (1) with control law u=Kzxp+Huw+us

becomes
xp=[Ap+BKx,+BHw+Bustv (3)
Defining the error vector e2xm— xp, then we have
e=Ane+B,0,—Bu,—v, (4)

where 84 (&, ¢.]=[K-K, H-H] and r&[1,", 1,7]"
— [T, wT]T.

In the following adaptive laws are derived for con-
stant (or slowly-varying) coeficients Ap and By, with
v=(), The corresponding adaptive laws for time-va-
rying coefficient system with v=( is studied subse-
quently.

3.2. System of Slowly-Varying Coefficients Wit-
hout Uncertainty Vector
3.2.1 Stable Adaptive Law
Consider By to be constant during the adaptation
process and v=(. Then the adaptive control law
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for state error equation (4) are obtained from the
following lemmas, For the first step of developing
an adaptive law, we regard that Bp is known to us.

Lemma 1 : Conventional Adaptive Control”-

The system of differential equation (4) with us=0,
and

¢=—S"B} Per’ (5)

is asymptotically stable, where 0 <P=PT € R™" js
the solution of

AL P+PAL+Q=6 Q=Q™>4¢ (6)
and 0<S=8T € R™",

Proof : Defining a positive definite function V, as
the Lyapunov function

V, =e"Pe+Tr | 0TSO (7)

where Tr denotes the trace of matrix, Then the de-

rivative of (7) along (4) results in
V,=—¢"Qe+2Tr| ¢" (S ¢+B} Per") |, (8)

Substituting (5) into (8) yields V,= —eTQe=<(), and
the equality holds if and only if all elements of e are
ZET0, Q.E.D,

The next step is to derive an adaptive law for the
plant whose coefficients By are unknown, but those

certain characteristics are known to us,

Remark 1 : From the above lamma, if we select S—
%1 YBp, for Bp,=0 and symmetric definite matrix
Bg,, then the adaptive law (5) is represented by

¢=—7"YLPer", (9)

where L={0r, n r, I+] (O, n.r € R™ ™ ig a null matrix
and I, € R™ is an identity matrix), and 0<y, is a
weighing factor. Here Y is defined as follows,

oo | 1o i Ba>0,
—1, if Bp<0, 10
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The result in Remark 1 can be found in”> ', If
components of r(t) are composed of distinct frequen-
ces, then dynamic systems described by (4) and
(5) or (9) are uniformly asymptotically stable in the
space of {e, .. An integral control law us=u; is
applied to the input stage to improve the performance
of adaptive system.

Lemma 2 : The system of differential equations (4),
(5) or (9) and

uz=—m{)u, +2U 'B}. Pe 1

is stable for 0<U=U" ¢ R™ if

m(t) > — Ann (Q) I e | 2/1 Anin (U) T Uz | 71,
for t€[t,, o0) {12)

Furthermore, the system is asymptotically stable if
m(t)>(.

Proof : Defining a positive definite function V, as
the Lyapunov function

V,=e"Pe+Tr{@"S &1+1/2uzUuy, 13

then derivative of (13) along (4) results in

V, = —eTQe+2Tri 8 (S 64+ BLPer™) t+ul (Ui,
—9B'Pe). 14

Substituting (5) or (9) and (12) into (14) yields

\-/2=~eTQe——m(t)uEUuz
gi/\mm(Q) I e “ ZHm(” Amin (U) “ Uz I 'S0

The equality (V=0) holds if and only if all elements
of e and uz are zero for m(t) >(. Therefore the system
is asymtotically stable, QE.D.

Remark 2 : From the above lamma, if we select U=2
¥. YBp, for Bp,=0 and symmetric definite matrix By,
then the adaptive law (11) is replaced by

uz=—m(tjuz+73'YLPe. 15

Here 0<y, is a weighting factor,
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3.2.2 Indirect-Suboptimal Control Law

As in the case of signal synthesis method (refer
to the companion paper®”, a lower bound of 7=
-V./ V. isused® to find a suboptimal control law
u, viaan “optimal” m(t).

> /\mm(Q) lell®+m (t) /\min(U) lug || ®
Amax (P) Il el + Tri®TS® I+ +-Amaz (V)] uy |

2g, (m, ug, e). 16)

wrere Agex( - ) represents the maximum eigenvalue
of ( - ). To achieve the condition of g.°(m° uz’ e)
=g (m, uz, e) for a given state e, the criterion

J- %f’:au ug | 2 m? ldt 9

is to be maximized subject to
Uz = —mu,+2U"'BT Pe AS—muz+f, 118

to find the “optimal” m(t), By treating the f in
(18) as one entity, an approximated solution (dis-
carded after tenth order of |juz i) is obtained by
using.

Hamilton-Jacobi- Bellman equation®

. The procedure
to solve the criterion (17) is the same in*’, however
the result can be used in parameter adaptation

method as well as in signal synthesis method.

A set of indirect solutions of g,(m, uz, e), namely
G,°, obtained is as follows,

GY={m® | the solution of Max.J, for &,>m"} (19
wher(‘ f m /\mm(Q) Amax(U) /ZiAmaz (P) Antn (U) 6
The result is summerized in the following propo-
sition.
proposition 1 : The system of differential equation
(4) with (5) or (9) and us==uz such that

4z= ~m'u;+2U"'BL Pe, with uy(ts)=0, @0

is asymptotically stable, where m° is described by
(19). The elements of (19) are as follows.
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The “optimal” m that solves Max. J is

. —m, for m< 0
m® =
0, for m=0 (21a)
where
m=m,+m,, for (21b)
m,=— ﬁ luzl *(fug) 7, and

2
m; = —8%!_ Huzll® (fuz) =2

and a sufficient condition of (21a) and (21b) is

|m1‘ %imz‘gﬁ/fﬂ ‘.Uzh (21'3)

Derivation of (21) is carried out by using the well
known procedures in®,

Following numerical example shows the applica-
tions of the above results.
Example 1 : Consider plant (1) with v=0), and model

(2) as follows.

P x,=—x,+0.5u (22a)
M xp=—20xn+2w, (22b)

0.10

0.00
i

STATE ERROR

0.10

—_ ' g
0.0 0.2 0.4 0.8 0.8
TIME(SEC)

Fig. 2 Sate error with m=0.
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with K {ty)=—30and H (to) =3. The numerical re-
sults shown in Fig. 2 and Fig. 3 demonstrate the

improvement of systemby application of the results.

U FREE
]UIMAX =4
g
?
a
e 0.2 0.4 0.8 0.
TIME(SEC)

Fig. 3 State error with indirect-suboptimal m?(cf,,
(19)).

3.3 System with Time-Varying Coefficients and
Uncertainty Vector

In this section it is assumed that the coefficients
of plant (1) are changed during the adaptation
process and uncertainty vector v=( exists. Consider
the Lyapunov function (13) with m as given by
(19). In this case the increasing function of V such
that the V satisfies the Lyapunov function should
carefully be reviewed. In this regard the weighting
matrix S and U are assumed to be satisfied in the

above condition (Lyapunov function).

Derivative of this type Lyapunov function along
(4), together with (5) and (20), is

V= e'Qe-mu} U, +Tri ¢S ¢+l U,
+ 2v'Pe. @3

Here S and U are in most cases constant matrices,
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but S and U can be changed when we select S=y,
YBp, and U=y, YBg,. The adaptive law obtained
from Lemma 1 for this case becomes

¥,=7,'YLPer'+ 7, 24

here ¥,=[ K, H] and ¥,=[K, H]. With the assum-
ption that the system coefficient matrices remain
constant during the adaptation process, ‘i’a was
regarded zero in the previous analysis (Section 3.
2). But in the present case of time-varying coeffi-
cients this is not true. Indeed, we first use

=
=2

.W“bz 7?‘ \’LPGI‘F

then the effect of ¥, in adaptive control law (24)

can be compensated as follows,

But first, an extra input up is added to the earlier

input term such that
Us=u,+u, {26}

The resulting derivative of Lyapunov function be-
comes

V=—e"Qe—m°u} Uu,+Tri¢"S ¢+ 26"S T,
+ %u{Uuz—r‘-ZvTPefiZu};BLPe. 27)

To achieve a stable control law the following crite-
rion is chosen.

Min Max V< 0 , @8

Up Yy

where y represents the uncertainties which has been
caused from time-varying terms and the uncertainty
vector v. The effects in the derivative of V is the
third, forth and fifth term of right hand side in
(27). Now two different approaches are suggested
to achieve this criterion.

3.3.1
The inequality (28) is equivallent to

Approach-1

Min Max V=0 29
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V,=Va+V,, with (30a)

Vi =Tr}@0'S 6—20"S Woi+1/2u} Uz, and  (30b)

V. =2v'pe—2u3,BlPe(or Vp,=2vTPe—2u;B,,
LPe). (30¢)

To follow the same design procedure about By in
Lemma 1-Remark 1, and Lemma 2-Remark 2, the
following case studies will be the same order of
procedure for known Bp first, and then unknown
Bp later.

Case 1- 1 : Known matrix Bp

BL P
Let u, = Wﬁ-g“*p,, for o> 0, then from (30

. T T Y
Vs RepPelete b V21V Pe |

=—2[B; Pell ;1428542 | Pell &y, 31

where =% | Vp, 1 max. Since &p consists of mis-
matching parameters caused from the time varying
terms of parameter and weighting matrices S and
U, we assumed that the resulting norm of error is
represented by o=y 11 Pe 1, for >0, then

Vo= 20 I BLPe Il py— | Pell (zn+2v) 1, 32

If p, and uyp, are selected by

_ et &) I Pell
o= o (33)
Up ™ i B}, I (#1+ §v) . (33}3)

then Vp=0, and the up, in (33b) satisfies the con-
dition (29). Notice that s4=0 when coefficients A p,
B, and weighting matrices S and U are constant,
Further comments on ¢ are given later,

Case 1- [I. Bp,= Bgl is unknown definite matrix

In this case the adaptive control law (33) can

not be used bacause Bp=[0, By} ]T is unknown. But
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we assume that Y is known as in the most case of
mechanical system, and Bp, is symmetric definite
matrix. Let
Up, = &/)2 for
| LPel *
for 14>(), Then from (30),

/)2>(], Cp]:/Lz }‘\ Lpel )

< 2(LPe) By (LPe)

= I LPe |

o028 +2 I LPel ¢y

~ 2(Lpe)"(Bp—1,) (LPe)
T ILPe |l

¢yl I LPel
= ':N[/\mm@pz —1)+1 lpz"’

pr"Z[ﬂz* M2

Gt LPe |
(34

where BW=Y]‘3m, If 7, is selected by

— H2+§v
£ )\mln(gﬁzilrj+ 1

(30
then Vpé() because Agin(Bp-Ir) > -1,

3.3.2 Approach-2

In the Approach-1, it is assumed that 1 \7',;1 =
s nPe =g 11 LPe . Detemining the value of r,
in certain application may not be easy. Therefore

a different approach is suggested next.

Case 2- 1 : Known matrix B,

B Pe s
Let uyy= BT Pl P for p:> (), then from 30

V< -20 | BL Pell g || Pe || &4t (36

If we select p;= ) Pe 11§y / 11 BoT Pe i, then V=0,
For this up,, V in (27) satisfies the folowing ine-

quality.
V= —e'Qe—m"u} Uu,+2¢,. e
To have \.7<0. it is required that

mn> (/\mzn (Q) ” e | : +2§m> / (/\mm(.U) (l Uz “z)
(38
Then the up; and condition (38) insure the overall

stability of adaptive system.
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Case 2-I : Bp,=B, is unknown definite matrix
YLPe

1 LPe
procedure as in the the Case 1-[],

Let up,= p,4, for p,>0, then by the same

Ve 2 Amin(Bpe =1 +1lo— £ I LPe ||, 139
For ,=C / [ Amin(Bp-1:)+1], V5, <0. This up,, and
condition (38) insure the overall stability of adap-
tive system.

In the above approaches, discontinuity of control
input up), i=1, .., 4 may happen if (| BpT Pe ;j —>()
or 1 LPej—0. To avoid this dificulty numerical
input up;® for sufficiently small ¢ >>() is chosen as
follows.

| B: Pell

0, for | B, Pell <&, i=1.3, and (40a)
ﬁlﬁic ron TorlLPe | 20

0, for [ LPe | <&, i=2, 4 (40b)

o
HUpg

{ —22 1, for | Bl Pe| =6

L
Hpg

—

Example 2 : For the following plant (41a) and the
model (41b), a computer simulation study is perfor-
med using a fourth-order Runge-Kutta method.

P"’—'[() 3 N N 0
T T 2 M =0, Seos (100) —1. 4
4la)
. 0 1 0
-4 —4 3

The numerical valus of feedback gains are selected

as K= [-22, -1] and H=1.2, with I=1,,=05]

The weighting constant P is

b [Z, 000 30()] o
300 301 .

The simulation results shown in Fig. 4 and Fig. 5
demonstrate the improvement of system behavior
with indirect-suboptimal m°. Fig. 6 shows better
results using the compensation scheme than those



TRAE HEE 374 1255 1988F 12H

adaptive controllers without any compensation, In
Fig. 6, it is observed that the error caused from the

time varying terms are reduced.

[
4
!
} ;
: {
oy
' h
g |t i
& i j
uiw H \
w T H !
£ o
! |
M []
HE
" [} =
. R — €% "
H H
1 H _
Ve €5 = Xo " X
Vi
!
o
1 T T 1
0.0 0.2 0.4 [ X ] 0.8
TIME(SEC)

Fig. 4 State error with m=q(.

STATE ERROR

2.5
o4
L)
oJ
- J

—
0.0 0.2

Fig. 5 State error with indirect-suboptimal m”(cf,,
(19)).
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-
;4
[+ 4
Q
& /
g |/
=1 ! !
[ 1 ’
)
[
s
T — 817X "%
""" €2 %0 " %0
«
‘l‘ L T 1 1
0.0 0.2 0.4 0.8 0.8
TIME(SEC)

Fig. 6 State error with indirect-suboptimal m® and
with compensation of uncertainty vector.

4. Conclusions

A plant with unknown coefficients and additive
uncertainty vector is considered in this paper. For
this system adaptive controllers are designed so that
the plant state follows the state of corrsponding
model. These controllers are designed based on the
Lyapunov direct method and the resulting control
schemes are developed by parameter adaptaion
method. Simulation result shows asymptotic sts-
bility of state error. The integral input with indirect
suboptimal solution reduces the norm of these state
error substantially, This method{direct adaptation}
does not require the complete identification of un-
known coefficients, thus the designed controller is
fast and can be used in the real-time,

In the design procedure, delay of adjustable system
has not been considered, but present information
is used to control the unknown plant, The control-
lers for the corresponding discrete systems may be
designed similarly. In the above simulation nume-
rical constraint on the input vector have improved,
although the issue of design with input constraint
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is not discussd theoretically in this paper. These
issues and the applications of this controller in de-
sign for mechanical systems are subject of future

research.
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