• 제목/요약/키워드: Parameter Transfer

검색결과 870건 처리시간 0.029초

가열된 회전원주를 지나는 정상유동 및 열전달해석 (Numerical Solution of Steady Flow and Heat Transfer around a Rotating Circular Cylinder)

  • 부정숙;이종춘
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3135-3147
    • /
    • 1993
  • A numerical method is presented which can solve the steady flow and heat transfer from a rotating and heated circular cylinder in a uniform flow for a range of Reynolds number form 5 to 100. The steady response of the flow and heat transfer is simulated for various spin parameter. The effects on the flow field and heat transfer characteristics known as lift, drag and heat transfer coefficient are analyzed and the streamlines, velocity vectors, vorticity, temperature distributions around it were scrutinized numerically. As spin parameter increases the region of separation vortex becomes smaller than upper one and the lower region will vanish. The lift force, a large part is due to the pressure force, increases as the Reynolds number and it increases linearly as spin parameter increases. The pressure coefficient changes rapidly with spin parameter on the lower surface of the cylinder and the vorticity is sensitive to the spin parameter near separation region. As spin parameter increases the maximum heat coefficient and the thin thermal layer on front region are moved to direction of rotation. However, with balance between the local increase and decrease, the overal heat transfer coefficient is almost unaffected by rotation.

HEAT AND MASS TRANSFER EFFECTS ON MHD NATURAL CONVECTION FLOW PAST AN INFINITE INCLINED PLATE WITH RAMPED TEMPERATURE

  • SHERI, SIVA REDDY;SURAM, ANJAN KUMAR;MODULGUA, PRASANTHI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권4호
    • /
    • pp.355-374
    • /
    • 2016
  • This work is devoted to investigate heat and mass transfer effects on MHD natural convection flow past an inclined plate with ramped temperature numerically. The dimensionless governing equations for this investigation are solved by using finite element method. The effects of angle inclination, buoyancy ratio parameter, permeability parameter, magnetic parameter, Prandtl number, heat generation, thermal radiation, Eckert number, Schmidt number, chemical reaction parameter and time on velocity, temperature and concentration fields are studied and presented with the aid of figures. The effects of the pertinent parameters on skin friction, rate of heat transfer and mass transfer coefficients are presented in tabular form. The numerical results are compared graphically with previously published result as special case of the present investigation and results found to be in good agreement.

Analysis of Flux Observers Using Parameter Sensitivity

  • Nam H.T.;Lee K.J.;Choi J.W.;Kim H.G.;Chun T.W.;Noh E.C.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.418-422
    • /
    • 2001
  • To achieve a high performance in direct vector control of induction motor, it is essential to correct estimation of rotor flux. The accuracy of flux observers for induction machines inherently depends on parameter sensitivity. This paper presents an analysis method for conventional flux observers using Parameter Sensitivity. The Parameter sensitivity is defined as the ratio of the percentage change in the system transfer function to the percentage change of the parameter variation. We define the ratio between real flux and estimated flux as the transfer function, and analyzed a parameter sensitivity of this transfer function by simulation.

  • PDF

파라메터 민감도를 이용한 유도전동기 자속 추정기 해석 (Analysis of Induction Motor Flux Observer using Parameter Sensitivity)

  • 남현택;이경주;김진규;최영태;최종우;김흥근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1176-1178
    • /
    • 2001
  • To obtain a high performance in a direct vector controlled induction machine, it is essential to correct estimation of rotor flux. The accuracy of flux observers for induction machines inherently depends on parameter sensitivity. This paper presents an analysis method for conventional flux observers using parameter Sensitivity. The Parameter sensitivity is defined as the ratio of the percentage change in the system transfer function to the percentage change of the parameter variation. We define the ratio between real flux and estimated flux as the transfer function, and analyzed a parameter sensitivity of this transfer function.

  • PDF

A Realization Method of the Transfer Functions Containing Variable Parameter

  • Kawakami, Atsushi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1988-1991
    • /
    • 2002
  • In this paper, we propose a method for realizing transfer functions containing variable parameter, by the state-space method. By using this method, variable transfer functions (VTF) can be often realized with a minimal dimension. In case that a minimal realization can not be obtained, the realization dimension can be fairly reduced.

  • PDF

유도전동기 자속추정기의 특성해석 (Analysis of Induction Machine Flux Observer)

  • 남현택;이경주;최종우;김흥근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 추계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2001
  • To obtain a high performance in a direct vector controlled induction machine, it is essential to correct estimation of rotor flux. The accuracy of flux observers for induction machines inherently depends on parameter sensitivity. This paper presents an analysis method for conventional flux observers using Parameter Sensitivity. The Parameter sensitivity is defined as the ratio of the percentage change in the system transfer function to the percentage change of the parameter variation. We define the ratio between real flux and estimated flux as the transfer function, and analyzed a parameter sensitivity of this transfer function.

  • PDF

GA를 이용한 전류 앰프의 파라미터 최적화 (The Parameter Optimization of Current Amplifier with GA)

  • 양주호;정황훈;김영완
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.147-152
    • /
    • 2006
  • The current type amplifier is the device that is used for an actuator as the motor's torque controller. However, it is too difficult to select the parameter value that has the desired output because the current type amplifier's transfer function is too complex. This study concern about the design of the current type amplifier with the desired output. From the modeled transfer function of the current type amplifier, the optimal parameter values of the transfer function can be selected in order to have the desired output using the Real Coded Genetic Algorithm(RCGA). The real circuit is made with the selected parameter value. The step response of the real circuit is in good agreement with the desired step response.

  • PDF

MHD Boundary Layer Flow and Heat Transfer of Rotating Dusty Nanofluid over a Stretching Surface

  • Manghat, Radhika;Siddabasappa, Siddabasappa
    • Kyungpook Mathematical Journal
    • /
    • 제60권4호
    • /
    • pp.853-867
    • /
    • 2020
  • The aim of this study was to analyze the momentum and heat transfer of a rotating nanofluid with conducting spherical dust particles. The fluid flows over a stretching surface under the influence of an external magnetic field. By applying similarity transformations, the governing partial differential equations were trans-formed into nonlinear coupled ordinary differential equations. These equations were solved with the built-in function bvp4c in MATLAB. Moreover, the effects of the rotation parameter ω, magnetic field parameter M, mass concentration of the dust particles α, and volume fraction of the nano particles 𝜙, on the velocity and temperature profiles of the fluid and dust particles were considered. The results agree well with those in published papers. According to the result the hikes in the rotation parameter ω decrease the local Nusselt number, and the increasing volume fraction of the nano particles 𝜙 increases the local Nusselt number. Moreover the friction factor along the x and y axes increases with increasing volume fraction of the nano particles 𝜙.

분포정수계 유압관로 모델의 동특성 해석 (Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model)

  • 김도태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

파라미터 민감도를 이용한 유도전동기 회전자 자속관측기의 특성 비교 (Comparison of Rotor Flux Observer Characteristics in Induction Motor Using Parameter Sensitivity)

  • 최종우;남현택;박용환;김흥근
    • 전력전자학회논문지
    • /
    • 제7권4호
    • /
    • pp.377-383
    • /
    • 2002
  • 유도전동기의 고성능 벡터제어를 수행하기 위해서는 회전자 자속의 정확한 추정이 필요하다. 유도전동기의 회전자 자속관측기들에서는 자속추정시에 전동기 상수들이 사용되므로 이들의 변동에 따라 자속추정에 영향을 받는다. 본 논문에서는 파라미터 민감도를 이용하여 파라미터 변동에 의한 자속관측기들의 추정자속 오차를 해석하였다. 파라미터 민감도는 시스템 파라미터의 변동분에 대한 시스템 전달함수의 변동분의 비로 정의되므로 실제 자속과 추정 자속의 비를 전달함수로 정의하고 해석을 수행하였다. 제안된 해석방법의 타당성을 확인하기 위해 시뮬레이션과 실험을 행하였다.