• Title/Summary/Keyword: Parameter Design

Search Result 4,984, Processing Time 0.033 seconds

Estimating an Optimal Scale of a Railway Station with Non-Passengers (철도 비승차 이용객을 고려한 역사 시설물별 적정규모 산정방안)

  • Oh, Tae ho;Lee, Seon ha;Kang, Hee up;Insigne, Maria Sharlene L.;Lee, Sang Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.76-91
    • /
    • 2017
  • The Area of a domestic railway station is designed based on the 4-step traffic demand forecasting model with the average daily passenger count as one of its parameter. However, nowadays, due to increasing rate of railway station's function, the non-passengers are increasing. In order to consider those non-passengers who aren't using trains, assumed volume are added to the average daily passenger count of station to estimate the area, but the criteria being applied has no concrete basis. Therefore, this study aimed to recalculate the increasing non-passenger rate based on actual survey data of station users in any type of railway station to obtain the optimum area. Subsequently, the the design area was performed through pedestrian simulation. According to the result of the simulation, it was found that the total space of the exciting railway stations can be reduced up to 45% and will still satisfy the level of service(LOS) requirement.

Effects of Shore Stiffness and Concrete Cracking on Slab Construction Load I: Theory (슬래브의 시공하중에 대한 동바리 강성 및 슬래브 균열의 영향 I: 이론)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Im, Ju-Hyeuk;Kim, Jae-Yo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • Long-term floor deflection caused by excessive construction load became a critical issue for the design of concrete slabs, as a flat plate is becoming popular for tall buildings. To estimate the concrete cracking and deflection of an early age slab, the construction load should be accurately evaluated. The magnitude of construction load acting on a slab is affected by various design parameters. Most of existing methods for estimating construction load addressed only the effects of the construction period per story, material properties of early age concrete, and the number of shored floors. In the present study, in addition to these parameter, the effects of shore stiffness and concrete cracking on construction load were numerically studied. Based on the result, a simplified method for estimating construction load was developed. In the proposed method, the calculation of construction load is divided to two steps: 1)Onset of concrete placement at a top slab. 2)Removal of shoring. At each step, the construction load increment is distributed to the floor slabs according to the ratio of slab stiffness to shore stiffness. The proposed method was compared with existing methods. In a companion paper, the proposed method will be verified by the comparison with the measurements of actual construction loads.

Optimal design of a nonparametric Shewhart-Lepage control chart (비모수적 Shewhart-Lepage 관리도의 최적 설계)

  • Lee, Sungmin;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.339-348
    • /
    • 2017
  • One of the major issues of statistical process control for variables data is monitoring both the mean and the standard deviation. The traditional approach to monitor these parameters is to simultaneously use two seperate control charts. However there have been some works on developing a single chart using a single plotting statistic for joint monitoring, and it is claimed that they are simpler and may be more appealing than the traditonal one from a practical point of view. When using these control charts for variables data, estimating in-control parameters and checking the normality assumption are the very important step. Nonparametric Shewhart-Lepage chart, proposed by Mukherjee and Chakraborti (2012), is an attractive option, because this chart uses only a single control statistic, and does not require the in-control parameters and the underlying continuous distribution. In this paper, we introduce the Shewhart-Lepage chart, and propose the design procedure to find the optimal diagnosis limits when the location and the scale parameters change simultaneously. We also compare the efficiency of the proposed method with that of Mukherjee and Chakraborti (2012).

Decomposition of Triclosan onto E-beam Process using a Design of Experiment(DOE) (전자빔을 이용한 triclosan 제거에 있어서 실험계획법의 이용)

  • Jang, Tae-Bum;Lee, Si-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.51-57
    • /
    • 2012
  • This study investigated on the photolytic degradation of Triclosan by E-beam process. The optimization of process was investigated during a series of batch experiments by design of experiments(DOEs). The DOE was one of the statistical application that was used for designed the response surface to determine the effects of each parameters. The responses were applied as removal rate of Triclosan(%, $Y_1$) and TOC removal rate(%, $Y_2$). Two independent variables were concentration of Triclosan and irradiation intensity that were designed as "$x_1$" and irradiation intensity was designed as "$x_2$". The regression equation in coded parameter between the Triclosan removal efficiencies(%) and TOC removal efficiencies(%) was $Y_1=63-12.4335x_1+15.1835x_2+5.8125x{_1}^2-5.6875x{_2}^2-0.75x_1x_2(R^2=95.1%,\;R^2(Adj)=91.7%)$ and $Y_2=46-8.8462x_1+11.7175x_2-0.75x{_1}^2-6.25x{_2}^2(R^2=98.7%,\;R^2(Adj)=97.7%)$, respectively. The model predictions agreed well with the experimentally observed results $R^2$ and $R^2(Adj)$ over 90% within both of $Y_1$ and $Y_2$. This result shows that the regression model express well about the effects of parameters on E-beam process and the statistical method was successfully applied.

A probabilistic fragility evaluation method of a RC box tunnel subjected to earthquake loadings (지진하중을 받는 RC 박스터널의 확률론적 취약도 평가기법)

  • Huh, Jungwon;Le, Thai Son;Kang, Choonghyun;Kwak, Kiseok;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • A probabilistic fragility assessment procedure is developed in this paper to predict risks of damage arising from seismic loading to the two-cell RC box tunnel. Especially, the paper focuses on establishing a simplified methodology to derive fragility curves which are an indispensable ingredient of seismic fragility assessment. In consideration of soil-structure interaction (SSI) effect, the ground response acceleration method for buried structure (GRAMBS) is used in the proposed approach to estimate the dynamic response behavior of the structures. In addition, the damage states of tunnels are identified by conducting the pushover analyses and Latin Hypercube sampling (LHS) technique is employed to consider the uncertainties associated with design variables. To illustrate the concepts described, a numerical analysis is conducted and fragility curves are developed for a large set of artificially generated ground motions satisfying a design spectrum. The seismic fragility curves are represented by two-parameter lognormal distribution function and its two parameters, namely the median and log-standard deviation, are estimated using the maximum likelihood estimates (MLE) method.

Seismic structural demands and inelastic deformation ratios: Sensitivity analysis and simplified models

  • Chikh, Benazouz;Laouami, Nacer;Mebarki, Ahmed;Leblouba, Moussa;Mehani, Youcef;Kibboua, Abderrahmane;Hadid, Mohamed;Benouar, Djillali
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • Modern seismic codes rely on performance-based seismic design methodology which requires that the structures withstand inelastic deformation. Many studies have focused on the inelastic deformation ratio evaluation (ratio between the inelastic and elastic maximum lateral displacement demands) for various inelastic spectra. This paper investigates the inelastic response spectra through the ductility demand ${\mu}$, the yield strength reduction factor $R_y$, and the inelastic deformation ratio. They depend on the vibration period T, the post-to-preyield stiffness ratio ${\alpha}$, the peak ground acceleration (PGA), and the normalized yield strength coefficient ${\eta}$ (ratio of yield strength coefficient divided by the PGA). A new inelastic deformation ratio $C_{\eta}$ is defined; it is related to the capacity curve (pushover curve) through the coefficient (${\eta}$) and the ratio (${\alpha}$) that are used as control parameters. A set of 140 real ground motions is selected. The structures are bilinear inelastic single degree of freedom systems (SDOF). The sensitivity of the resulting inelastic deformation ratio mean values is discussed for different levels of normalized yield strength coefficient. The influence of vibration period T, post-to-preyield stiffness ratio ${\alpha}$, normalized yield strength coefficient ${\eta}$, earthquake magnitude, ruptures distance (i.e., to fault rupture) and site conditions is also investigated. A regression analysis leads to simplified expressions of this inelastic deformation ratio. These simplified equations estimate the inelastic deformation ratio for structures, which is a key parameter for design or evaluation. The results show that, for a given level of normalized yield strength coefficient, these inelastic displacement ratios become non sensitive to none of the rupture distance, the earthquake magnitude or the site class. Furthermore, they show that the post-to-preyield stiffness has a negligible effect on the inelastic deformation ratio if the normalized yield strength coefficient is greater than unity.

Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron (회주철의 미세구조와 인장거동 분석 및 확률론적 피로수명평가)

  • Sung, Yong Hyeon;Han, Seung-Wook;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.721-728
    • /
    • 2017
  • High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

Design of a CCM/DCM dual mode DC-DC Buck Converter with Capacitor Multiplier (커패시터 멀티플라이어를 갖는 CCM/DCM 이중모드 DC-DC 벅 컨버터의 설계)

  • Choi, Jin-Woong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.21-26
    • /
    • 2016
  • This paper presents a step-down DC-DC buck converter with a CCM/DCM dual-mode function for the internal power stage of portable electronic device. The proposed converter that is operated with a high frequency of 1 MHz consists of a power stage and a control block. The power stage has a power MOS transistor, inductor, capacitor, and feedback resistors for the control loop. The control part has a pulse width modulation (PWM) block, error amplifier, ramp generator, and oscillator. In this paper, an external capacitor for compensation has been replaced with a multiplier equivalent CMOS circuit for area reduction of integrated circuits. In addition, the circuit includes protection block, such as over voltage protection (OVP), under voltage lock out (UVLO), and thermal shutdown (TSD) block. The proposed circuit was designed and verified using a $0.18{\mu}m$ CMOS process parameter by Cadence Spectra circuit design program. The SPICE simulation results showed a peak efficiency of 94.8 %, a ripple voltage of 3.29 mV ripple, and a 1.8 V output voltage with supply voltages ranging from 2.7 to 3.3 V.

A Proposal of Bridge Design Guideline by Analysis of Marine Accident Parameters occurred at Bridges Crossing Navigable Waterways (항만횡단 해상교량의 해양사고 관련 인자 분석을 통한 교량설계안 제안)

  • Park, Young-Soo;Lee, Yun-Sok;Park, Jin-Soo;Cho, Ik-Soon;Lee, Un
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.743-750
    • /
    • 2008
  • Recently Bridges crossing waterway are constructed in navigable waterway, so marine accidents near bridges navigable waterway often occurred bemuse that has affect dangerous element for. This paper analysed the necessary environmental factors to navigate safely near bridges and how to set up the environmental factors. Marine accidents elements occurred near bridges relate to span of bridge, size of navigating ship, length of straight way and traffic volume except mistake of mariners. As results of marine accident parameter analysis, Span of bridge is necessary more than 300m at least based on marine accident's analysis, and in case of more than ship's Length 150m, span of bridge is necessary more than 500m, $3{\sim}4L$(L; Ship's Length). Length of straight way before bridge is necessary more than 8L to minimize the marine accident.

A Study on the Safety Ratio of Reservoir Embankment by Seismic Reinforcement Section Shape (내진보강 단면형상에 따른 국내 저수지 제방의 안전율에 대한 검토)

  • Lim, Seonghun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.343-355
    • /
    • 2021
  • Agricultural reservoirs seek human convenience by supplying agricultural water and providing flood damage effects and rest areas at the same time, but preventing them from aging reservoirs and earthquakes is important. The safety of levees is influenced by field material properties such as soil parameter values of the granular materials that make up the levees, but since precision safety diagnosis or general literature values are diverted, the final safety factors are limited to material properties alone. Since safety factors are determined by physical characteristic values and embankment shapes and have a significant impact on safety factors, accurate contemplation is required when examining reinforced cross sections. Therefore, this study analyzed the case of reasonable and economical reinforcement intersections when designing '◯◯reservoir' in Goheung-geun, Jeollanam-do using the GEP-SLOPE program to enable rational economic design of reinforcement intersections through repeated reviews. As a result of reducing and analyzing the first, second, and third seismic reinforcement of the levees, it was confirmed that the safety ratio was secured even with a significantly smaller amount of reinforcement than the first, second, and lower slopes by obtaining design standards of 1.20. In addition, when determining all seismic reinforcement cross-sectional shapes, it was confirmed that the shape that reinforces only the lower side rather than the upper side of the slope and the entire slope was economical with minimized cross-sectional reinforcement.