• Title/Summary/Keyword: Parameter Control

Search Result 4,527, Processing Time 0.029 seconds

A Study on the Discrete Time Parameter Adaptive Learning Control System (이산시간 파라미터 적응형 학습제어 시스템에 관한 연구)

  • 최순철;양해원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.4
    • /
    • pp.352-359
    • /
    • 1988
  • A learning control system which should have memory elements can be designed by utilizing the concept of parameter adaptation for unknown control object system parameters and regard it as a hybrid adaptive control system. A parameter adaptive learning control system applicable to a continuous time system has been already reported. Since there have been rapid developments in digital technology, it is possible to extend a continuous time parameter adaptive learning control system concept to a discrete time case. This problem is treated in this paper. Its justfication is proved and a simulation shows that this algorithms is effective.

  • PDF

A STUDY ON THE ROBOTST MODRL-FOLLOWING CONTROL SYSTEMS WITH ONLINEAR PLANT

  • Kwon, Sung-Ha;Shimemura, Etsujiro;Shin, Jae-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1934-1938
    • /
    • 1991
  • This paper proposes a robust model following control systems with nonlinear time varying plant. which realies good properties such as asymptotic stability, disturbance rejection and model-following with reduced sensitivity for plant parameter variation. The schemes do not incorporate any parameter identification algorithms, but the adaptation is realized through signal synthesis in a fixed parameter structure.

  • PDF

Optimization of Wheat Harvest

  • Kim, S.H.;Kolaric, W.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.7-15
    • /
    • 2000
  • Optimization was considered from three perspectives : minimum grain loss, minimum damaged grain loss, and minimum power consumption. Factors affecting combine performance were classified as control, adjustable, and environmental. Control and adjustable factors were optimized by the parameter design developed by Taguchi. Environmental factors were used as input for optimization. Optimum range for control and adjustable factors are presented. Parameter design was adequate to obtain the optimum levels of control factors and optimum range of adjustable factors.

  • PDF

OPTIMIZATION OF WHEAT HARVEST

  • Kim, Sang-hun-;William-J.Kolaric;Kang, Whoa-Seug
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.714-726
    • /
    • 1993
  • Optimization was considered from three perspectives ; minimum grain loss, minimum damaged grain loss, and minimum power consumption. Factors affecting combine performance were classified as control , adjustable , and environmental. Control and adjustable factors were optimized by the parameter design developed by Tajuchi. Environmental factors were used as input for optimization Optimum range for control and adjustable factors are presented. Parameter design was adequate to obtain the optimum levels of control factors and optimum range of adjustable factors.

  • PDF

Sliding Mode Control with Nonlinear Interpolation in Variable Boundary Layer

  • Kim, Yookyung;Jeon, Gijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.35.1-35
    • /
    • 2002
  • $\textbullet$ Sliding mode control (SMC) with nonlinear interpolation in variable boundary layer (VBL) is proposed $\textbullet$ A sigmoid function is used for nonlinear interpolation in VBL. $\textbullet$ The Parameter of the sigmoid function is tuned by fuzzy controller $\textbullet$ The choice of parameter for the sigmoid function is guided by FC. $\textbullet$ The parameter is continuously updated as boundary layer thickness varies. $\textbullet$ The proposed method hasbetter tracking performance than the conventional linear interpolation $\textbullet$ To demonstrate its performance the proposed control algorithm is applied to a nonlinear system.

  • PDF

A Position Control of Nonlinear Hydraulic System using Variable Design-Parameter Fuzzy PID Controller (가변 설계 파라미터 퍼지 PID 제어기를 이용한 비선형 유압시스템의 위치 제어)

  • 김인환;김종화;김진규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.136-144
    • /
    • 2004
  • In general a hydraulic system which uses a single rod hydraulic as an actuator is modeled as a nonlinear system and reveals uncertain Parameter characteristics such as the density variation of hydraulic oil and is subject to load variations and severe disturbances during operation. A variable design-parameter fuzzy PID controller is adopted to solve these undesirable internal and external problems and its effectiveness is verified through computer simulations for control performance and real time control possibility.

Coprime Factor Reduction of Parameter Varying Controller

  • Saragih, Roberd;Widowati, Widowati
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.836-844
    • /
    • 2008
  • This paper presents an approach to order reduction of linear parameter varying controller for polytopic model. Feasible solutions which satisfy relevant linear matrix inequalities for constructing full-order parameter varying controller evaluated at each polytopic vertices are first found. Next, sufficient conditions are derived for the existence of a right coprime factorization of parameter varying controller. Furthermore, a singular perturbation approximation for time invariant systems is generalized to reduce full-order parameter varying controller via parameter varying right coprime factorization. This generalization is based on solutions of the parameter varying Lyapunov inequalities. The closed loop performance caused by using the reduced order controller is developed. To examine the performance of the reduced-order parameter varying controller, the proposed method is applied to reduce vibration of flexible structures having the transverse-torsional coupled vibration modes.

A Robust Adaptive Control for Permanent Magnet Synchronous Motor Subject to Parameter Uncertainties and Input Saturations

  • Wu, Shaofang;Zhang, Jianwu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2125-2133
    • /
    • 2018
  • To achieve high performance speed regulation, a robust adaptive speed controller is proposed for the permanent magnet synchronous motor (PMSM) subject to parameter uncertainties and input saturations in this paper. A nonlinear adaptive control is introduced to compensate the PMSM speed tracking errors due to uncertainties, disturbances and control input saturation constraints. By combining the adaptive control and the nonlinear robust control based on the interconnection and damping assignment (IDA) strategy, a new robust adaptive control is designed for speed regulation of PMSM. Stability and robustness of the closed-loop control system involved with the constrained control inputs rather than unconstrained control inputs are validated. Simulations for PMSM control in the presence of uncertainties and saturations nonlinearities show that the proposed approach is effective to regulate speed, and the average tracking error using the proposed approach is at least 32% smaller than the compared methods.

Parallel Robust $H_{\infty}$ Control for Weakly Coupled Bilinear Systems with Parameter Uncertainties Using Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.689-696
    • /
    • 2006
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ composite control of weakly coupled bilinear systems with time-varying parameter uncertainties and exogenous disturbance using the successive Galerkin approximation(SGA). By using weak coupling theory, the robust $H_{\infty}$ control can be obtained from two reduced-order robust $H_{\infty}$ control problems in parallel. The $H_{\infty}$ control theory guarantees robust closed-loop performance but the resulting problem is difficult to solve for uncertain bilinear systems. In order to overcome the difficulties inherent in the $H_{\infty}$ control problem, two $H_{\infty}$ control laws are constructed in terms of the approximated solution to two independent Hamilton-Jacobi-Isaac equations using the SGA method. One of the purposes of this paper is to design a closed-loop parallel robust $H_{\infty}$ control law for the weakly coupled bilinear systems with parameter uncertainties using the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

A Study on the Position Control of Electrohydraulic Servo System Using Adaptive Sliding Mode Control (Adaptive Sliding Mode Control을 이용한 전기유압식 서어보시스템의 위치제어에 관한 연구)

  • Hyun, Jang-Hwan;Lee, Chug-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.143-157
    • /
    • 1994
  • This paper is concerned with the position control of electrohydraulic servo system under parameter variation. An adaptive sliding mode control which uses the direct parameter estimation scheme, is proposed to design a robust controller for fast and accurate control of the system. It is shown that the adaptive sliding mode control algorithm is robust and effective in attaining fast and accurate position control of system under time-dependent parameter variation. It is also shown experimentally that chattering phenomena in a sliding mode control can significantly be reduced by using boundary layer technique, and that new approach in sliding mode control introducing a term proportional to the distance between the current state and the sliding surface in the control law is effective to obtain fast response and to increase stability of the system. Computer simulation on the dynamic performance of the control system is also presented.

  • PDF