• Title/Summary/Keyword: Parallel-flow

Search Result 1,066, Processing Time 0.025 seconds

A Study on Validation of Variable Aperture Channel Model: Migration Experiments of Conservative Tracer in Parallel and Wedge-Shaped Fracture

  • Keum, D.K.;Hahn, P.S.;Vandergraaf, T.T.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.245-261
    • /
    • 1998
  • In order to validate the variable aperture channel model that can deal with the non-uniform How rate in flow domain, migration experiments of conservative tracer were performed in two artificial fractures, a parallel and a wedge-shaped fracture. These different fracture shapes were designed to give different flow pattern. The fractures were made from a transparent acrylic plastic plate and a granite slab with dimensions of 10 $\times$ 61 $\times$ 61 cm. Uranine (Fluorescein sodium salt) was used as a conservative tracer. The volumetric flow rates of uranine feed solution were 30 mL/ hr, giving a mean residence time in the fracture of approximately 24 hours for the parallel fracture and 34 hours for the wedge-shaped fracture. The migration plumes of uranine were photographed to obtain profiles in space and time for movement of a tracer in fractures. The photographed migration plume was greatly affected by the geometric shape of fractures. The variable aperture channel model could have predicted the experimental results for the parallel fracture with a large accuracy. It is expected that the variable aperture channel model would be effective to predict the transport of the contaminant, especially, with the flow rate variation in a fracture.

  • PDF

The wave stability of the nonparallel natural convection flows adjacent to an inclined isothermal surface submerged in water at $4degC$ ($4degC$ 물에 잠겨있는 경사진 등온 벽주위 비평행 자연대류의 파형 안정성)

  • 황영규;장명륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.644-653
    • /
    • 1991
  • A wave instability problem is formulated for natural convection flows adjacent to a inclined isothermal surface in pure water near the density extremum. It accounts for the nonparallelism of the basic flow and temperature fields. Numerical solutions of the hydrodynamic stability equations constitute a two-point boundary value problem which are accurately solved using a computer code COLSYS. Neutral stability results for Prandtl number of 11.6 are obtained for various angles of inclination of a surface in the range from-10 to 30 deg. The neutral stability curves are systematically shifted toward modified Grashof number G=0 as one proceeds from downward-facing inclined plate(.gamma.<0.deg.) to upward-facing inclined plate (.gamma.>0.deg.). Namely, an increase in the positive angle of inclination always cause the flows to be significantly more unstable. The present results are compared with the results for the parallel flow model. The nonparallel flow model has, in general, a higher critical Grashof number than does the parallel flow model. But the neutral stability curves retain their characteristic shapes.

Heat and Flow Analysis Inside a Parallel-Flow Heat Exchanger (평행류 열교환기 내부의 열유동 해석)

  • Oh, Seok-Jin;Chung, Kil-Yoan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.781-788
    • /
    • 2003
  • In the present study, the heat and flow characteristics of a parallel-flow heat exchanger are numerically analyzed by using three-dimensional turbulent modeling. Heat transfer rate and pressure drop are evaluated using the concept of the efficiency index by varying the locations, the shapes and angles of inlet/outlet, and the protrusion height of flat tube. It is found that negative angle of the inlet improves the heat transfer rate and pressure drop. Results show that the locations of the inlet and outlet should be toward the right side and the left side to the reference model, respectively, in order to enhance the heat transfer rate and pressure drop. Increasing the height of the lower header causes pressure drop to decrease and yields the good flow characteristics. The lower protrusion height of flat tube shows the improvement of the heat transfer rate and pressure drop. The heat transfer rate is greatly affected by the parameters of outlet side such as the location and angle of the outlet. However, the pressure drop is influenced by the parameters of inlet side such as the location and angle of inlet and the height of the header.

PARALLEL CFD SIMULATIONS OF PROJECTILE FLOW FIELDS WITH MICROJETS

  • Sahu Jubaraj;Heavey Karen R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.94-99
    • /
    • 2006
  • As part of a Department of Defense Grand Challenge Project, advanced high performance computing (HPC) time-accurate computational fluid dynamics (CFD) techniques have been developed and applied to a new area of aerodynamic research on microjets for control of small and medium caliber projectiles. This paper describes a computational study undertaken to determine the aerodynamic effect of flow control in the afterbody regions of spin-stabilyzed projectiles at subsonic and low transonic speeds using an advanced scalable unstructured flow solver in various parallel computers such as the IBM SP4 and Linux Cluster. High efficiency is achieved for both steady and time-accurate unsteady flow field simulations using advanced scalable Navier-Stokes computational techniques. Results relating to the code's portability and its performance on the Linux clusters are also addressed. Numerical simulations with the unsteady microjets show the jets to substantially alter the flow field both near the jet and the base region of the projectile that in turn affects the forces and moments even at zero degree angle of attack. The results have shown the potential of HPC CFD simulations on parallel machines to provide to provide insight into the jet interaction flow fields leading to improve designs.

  • PDF

Implementing Distributed Optimal Power Flow Using the Alternating Direction Method

  • Chung Koohyung;Kim Balho H.;Song Kyung-Bin
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.412-415
    • /
    • 2005
  • The recent requirement for faster and more frequent solutions has encouraged the consideration of parallel implementations using decentralized processors. Distributed multi-processor environments can potentially greatly increase the available computational capacity and decrease the communication burden, allowing for faster Optimal Power Flow (OPF) solutions. This paper presents a mathematical approach to implementing distributed OPF using the alternating direction method (ADM) to parallelize the OPF. Several IEEE Reliability Test Systems were adopted to demonstrate the proposed algorithm.

Large Scale Stabilized Finite Element Simulation and Modeling for Environmental Flows in Urban Area

  • Kashiyama Kazuo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.21-26
    • /
    • 2006
  • A large-scale finite element simulation and modeling method is presented for environmental flows in urban area. Parallel stabilized finite element method based on domain decomposition method is employed for the numerical simulation. Several GIS and CAD data are used for the preparation of the shape model for landform and urban structures. The present method Is applied to the simulation of flood flow and wind flow In urban area. The present method is shown to be a useful planning and design tool for the natural disasters and the change of environments in urban area.

  • PDF

Cycle Analysis of Air-Cooled Double-Effect Absorption Cooling System with Parallel Flow Type (공랭형 병렬방식 2중효용 흡수식 냉방시스템의 사이클 해석)

  • 오명도;김선창;김영인;이홍원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2099-2109
    • /
    • 1993
  • A gas-fired 4RT absorption heat pump was designed as an air-conditioner for domestic use during the summer. The absorption heat pump is air-cooled. double-effect, $LiBr-H_{2}O$ system with parallel flow type. The performance of the absorption heat pump in the cooling mode of operation was investigated through cycle modeling and simulation to obtain the system characteristics with parameter changes. System parameters considered in this analysis were the inlet temperature of cooling air to the absorber, the working solution concentrations, the ratio of the amount of the weak solution from the absorber, and the LTD's of each heat exchange component. The optimum designs and operating conditions were determined based on the operating constraints and the coefficient of performance.

병렬기계에서 실시간 공구할당 및 작업순서 결정 모델

  • 이충수;김성식;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.880-884
    • /
    • 1995
  • Manufacturing environment is getting characterized by unstable market demand,short product life cycle and timebased competition. For adapting this environment,machine tools have to be further versatile functionally in order to reduce part's set-up time. Unlike existing manufacturing systems mainly to focus on part flow, it is important to control tool flow using fast tool change device and tool delivery device in parallel machines consisting of versatile machine tools, because complete operations on a part can be performed on one machine tool in a single machine set-up. In this paper, under dynamic tool allocation strategy to share tools among machine tools, we propose a real-time tool allocation and operation esequence model with an objective of minimizing flow time using autonomy and negotiation of agents in parallel machines

  • PDF

COUETTE FLOW OF TWO IMMISCIBLE LIQUIDS BETWEEN TWO PARALLEL POROUS PLATES IN A ROTATING CHANNEL

  • Rani, Ch. Baby
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.57-68
    • /
    • 2015
  • When a straight channel formed by two parallel porous plates, through which two immiscible liquids occupying different heights are flowing a secondary motion is set up. The motion is caused by moving the upper plate with a uniform velocity about an axis perpendicular to the plates. The solutions are exact solutions. Here we discuss the effect of suction parameter and the position of interface on the flow phenomena in case of Couette flow. The velocity distributions for the primary and secondary flows have been discussed and presented graphically. The skin-friction amplitude at the upper and lower plates has been discussed for various physical parameters.

Computer simulation for the performance analysis of automobile air conditioning system (자동차용 에어컨 시스템의 성능해석을 위한 컴퓨터 시뮬레이션)

  • 이건호;유정열;정종대;최규환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.202-216
    • /
    • 1998
  • A computer simulation for the performance analysis of automobile air conditioning components is carried out for the various operating conditions. The automobile air conditioning system consists of laminated type evaporator, swash plate type compressor, parallel flow type condenser, externally equalized thermostatic expansion valve and receiver drier. The overall heat transfer coefficient and the pressure drop in laminated type evaporator were obtained through experiments. In parallel flow type condenser, the performance analysis computer program using the empirical equation for heat transfer coefficient has been developed and the results are compared with experimental results. A model for matching the performance analysis programs of respective components .of automobile air conditioning system is introduced. Further, the effects of varying condenser size and refrigerant charge on the performance of automobile air conditioning system are discussed clearly.

  • PDF