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ABSTRACT. When a straight channel formed by two parallel porous plates, through which two

immiscible liquids occupying different heights are flowing a secondary motion is set up. The

motion is caused by moving the upper plate with a uniform velocity about an axis perpendicular

to the plates. The solutions are exact solutions. Here we discuss the effect of suction parame-

ter and the position of interface on the flow phenomena in case of Couette flow. The velocity

distributions for the primary and secondary flows have been discussed and presented graphi-

cally. The skin-friction amplitude at the upper and lower plates has been discussed for various

physical parameters.

1. INTRODUCTION

The fluid flow between porous boundaries is of practical interest in hydrology and petroleum

industry. The problem of water coming is usually encountered in the oil industry when a layer

of water underlies a layer of water forming a system of immiscible fluids. The effect of suc-

tion is to supply an adverse pressure gradient to the fluid which intern causes back flow near

the stationary plate. The velocity profile due to the flow of two incompressible immiscible

fluids between two parallel plates and occupying equal heights was obtained by Bird et al [1].

The problem was extended by Kapur and Sukla [2] to the case of the flow of a number of

incompressible immiscible fluids occupying different heights. Vidyanidhi and Nigam[3] who

have studied the secondary flow when a straight channel, formed by two parallel plates through

which fluid is flowing under a constant pressure gradient, is rotated about an axis perpendicular

to the plates. This problem was later extended by Vidyanidhi [4] in the frame work of hydro-

magnetics and by Vidyanidhi, BalaPrasad and RamanaRao [5] to include the effects of uniform

suction and injection. The later analysis has been made use of by RamanaRao and Balaprasad

[6] in studying the temperature distribution
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Jana and Datta [7] have considered the Couette flow and the heat transfer of a various in-

compressible fluids between two infinite parallel plates which rotate with a uniform angular

velocity about an axis perpendicular to the plates.

V.V.RamanaRao and Narayana [8] extended the work of Jana and Datta [7] on the flow

of two incompressible immiscible fluids occupying equal heights between two parallel plates.

Ch.BabyRani [9] extended the work of V. V. RamanaRao and N. V. Narayana[10] on the flow

of two immiscible liquids occupying different heights between two parallel porous plates for

Poiseuille flow. Ch.Baby Rani [11] studied the heat transfer characteristics for the two liq-

uids occupying different heights in a rotating channel for poiseuille flow. Ch. Baby Rani [12]

considered the combined effect of the pressure gradient and motion of the upper plate and stud-

ied the velocity distributions for the liquids occupying different heights between two parallel

porous plates. Ch. Baby Rani [13] studied the heat transfer characteristics for Generalized

Couette flow of two immiscible liquids occupying different heights between two parallel plates

in a rotating channel.

Here we consider the two liquids occupying different heights between two parallel porous

plates in a rotating system for Couette flow and I discussed the primary flow and the secondary

flow for the two immiscible liquids to obtain the effects uniform suction and injection at the

plates. Olive oil and water can be taken as two immiscible liquids to test the theoretical con-

clusions of this work for setting up an experiment as suggested by Vidyanidhi and Nigam [3].

2. MATHEMATICAL FORMULATION AND ITS SOLUTION

The equations of motion and continuity for the steady state in a rotating frame of reference

O′X ′Y ′Z ′ as considered by Squire (1956) for two immiscible liquids as shown in Fig.1, with

negligible modified pressure, are(−→
U1
m.

−→
∇1

)−→
U1
m + 2

−→
Ω ×

−→
U1
m = vm

−→
∇′2−→U1

m (2.1)

−→
∇1.

−→
U1
m = 0 (m = 1, 2) (2.2)

Here the subscripts 1 and 2 refer to the upper and lower liquids in the ranges ε1 ≤ z1 ≤ L(zone-

I) and −L ≤ Z1 ≤ ε1(zone-II) respectively.
−→
U1
1 ,
−→
U1
2 ,
−→
Ω1 and

−→
r1 are the velocities of the upper

liquid, lower liquid, angular velocity and position vector respectively.

We choose a right handed Cartesian system such that Z1-axis is perpendicular to the mo-

tion of the liquids along the X1-axis between two infinite parallel plates Z1 = ±L(stationary

relative to O′X ′Y ′Z ′).
The motion is caused when the upper plate moves with uniform velocity U0 along the X1-

axis.

The velocities of the two fluids are then represented by

−→
U1
1 =

[
u11
(
z1
)
, v11
(
z1
)
,−Wo

]
,

−→
U1
2 =

[
u12
(
z1
)
, v12
(
z1
)
,−Wo

]
(2.3)

And Ω1 =
(
0, 0,Ω1

)
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FIGURE 1. Schematic diagram

Introducing, the non-dimensional quantities

x1 = xL, y1 = yL, z1 = zL, u11 = u1U0, v11 = v1U0,
u12 = u2U0, v12 = v2U0, ρ2 = λρ1, v2 = μ2v1,

Ω1 = α2v2/L
2 (Taylor number for the lower liquid)

βm =
LΩ1

m

νm
(Suction Reynolds number) (2.4)

Ω1
1ν2 = Ω1

2ν1 then β1 = β2 = β implying that the normal velocity at the plate z1 = −L is

a porous plate through which liquid is forced into the channel with a uniform velocity and the

rate of injection at the lower plate is equal to the suction rate at the upper plate.

Equation (2.1) reduces to

The equations in zone-I (ε ≤ z ≤ L) are

d2u1
dz2

− β
du1
dz

= −2α2μ2v1,
d2v1
dz2

− β
dv1
dz

= 2α2μ2u1 (2.5)

The equations in zone-II are (−L ≤ z ≤ ε)are

d2u2
dz2

− β
du2
dz

= −2α2v2,
d2v2
dz2

− β
dv2
dz

= 2α2u2 (2.6)

We seek the solutions of equations (2.6) and (2.7) subject to the boundary conditions.

u1 = 1, v1 = 0 at z = 1

u2 = v2 = 0 at z = −1 (2.7)

Interface conditions are

u1 = u2, v1 = v2 at z = ε
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du1
dz

= λμ2du2
dz

at z = ε,
dv1
dz

= λμ2dv2
dz

at z = ε

In terms of complex notation q1 = u1 + iv1, q2 = u2 + iv2
In zone-I

d2q1
dz2

− β
dq1
dz

− 2iμ2α2q1 = 0 (2.8)

In zone-II
d2q2
dz2

− β
dq2
dz

− 2iα2q2 = 0 (2.9)

Subject to the boundary conditions

q1 = 1 at z = 1,

Interface condition

q1 = q2 at z = ε, (−1 < ε < 1)

dq1
dz

= λμ2dq2
dz

at z = ε,

q2 = 0 at z = −1 (2.10)

Let

m1 =

[√
β4 + 64α4μ4 + β2

2

] 1
2

, n1 =

[√
β4 + 64α4μ4 − β2

2

] 1
2

(2.11)

m2 =

[√
β4 + 64α4 + β2

2

] 1
2

, n2 =

[√
β4 + 64α4 − β2

2

] 1
2

(2.12)

We get

q1 = e
βz
2

[
A Sh

(m1

2
+ i

n1

2

)
z + B Ch

(m1

2
+ i

n1

2

)
z
]

(2.13)

q2 = e
βz
2

[
C Sh

(m2

2
+ i

n2

2

)
z + D Ch

(m2

2
+ i

n2

2

)
z
]

(2.14)

q1 = e
βz
2

[
1

a21 + b21

{
e−

β
2 (a1 − ib1)− H1G2 −H2G1

F1G2 − F2G1
{(a1e1 + b1f1) + i (a1f1 − b1e1)}

}

Sh
(m1z

2
+ i

n1z

2

)
+

H1G2 −H2G1

F1G2 − F2G1
Ch
(m1z

2
+ i

n1z

2

)]
(2.15)

q2 = e
βz
2

[
1

a22 + b22

{
H2F1 −H1F2

F1G2 − F2G1
{(a2e2 + b2f2) + i (a2f2 − b2e2)}

}
Sh
(m2z

2
+ i

n2z

2

)

+
H2F1 −H1F2

F1G2 − F2G1
Ch
(m2z

2
+ i

n2z

2

)]
(2.16)
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Separating the real and imaginary parts

U1 =
e

βz
2(

a21 + b21
) (

λ2
1 + λ2

3

) [e−β
2
(
λ2
1 + λ2

3

) (
a1Sh

m1z

2
cos

n1z

2
+ b1Ch

m1z

2
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2

)

+ {(λ1λ2 + λ3λ4) (a1e1 + b1f1)− (λ1λ4 − λ2λ3) (a1f1 − b1e1)}Shm1z

2
cos
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2
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m1z

2
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2

+
(
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2
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2
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2
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(2.17)
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e
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3
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2
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1 + λ2

3

) (
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2
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2
− b1Sh
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2
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2
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2
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2
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2
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m1z

2
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2
+ (λ1λ2 + λ3λ4)Sh

m1z

2
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2
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(2.18)

U2 =
−e

βz
2

(a22+b22)(λ2
1+λ2

3)
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2
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m2z

2
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2

+
(
a22 + b22
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m2z

2
cos
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2
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m2z

2
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n2z

2
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(2.19)
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−e
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1+λ2
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2
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2
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The skin-friction at the upper plate is given by τU = dU1
dz

∣∣∣
z=1

τU =
e

β
2

2
(
a21 + b21

) (
λ2
1 + λ2

3

) [(βT1 + T3n1 − T4m1) a1 + (−βT4 + T1m1 + T2n1) e1

+(βT3 + T2m1 − T1n1) f1 + (βT2 + T3m1 + T4n1) b1] (2.21)

Where

T1 = a1e
−β

2
(
λ2
1 + λ2

3

)
+ (λ1λ2 + λ3λ4) (a1e1 + b1f1)− (λ1λ4 − λ2λ3) (a1f1 − b1e1)

(2.22)
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T2 = b1e
−β

2
(
λ2
1 + λ2

3

)− (λ1λ2 + λ3λ4) (a1f1 − b1e1)− (λ1λ4 − λ2λ3) (a1e1 + b1f1)
(2.23)

T3 =
(
a21 + b21

)
(λ1λ4 − λ2λ3) (2.24)

T4 =
(
a21 + b21

)
(λ1λ2 + λ3λ4) (2.25)

The skin-friction at the lower plate is given by τL = dU2
dz

∣∣∣
z=−1

τL =
e−

β
2

2
(
a22 + b22

) (
λ2
1 + λ2

3

) [(−βS2 + S3n2 + S4m2) a2 + (−βS4 + S1n2 + S2m2) e2

+(βS3 + S1m2 − S2n2) f2 − (βS1 + S3m2 + S4n2) b2] (2.26)

Where

S1 = {(λ1λ5 + λ3λ6) (a2f2 − b2e2) + (λ1λ6 − λ3λ5) (a2e2 + b2f2)} (2.27)

S2 = {(λ1λ6 − λ3λ5) (a2f2 − b2e2) − (λ1λ5 + λ3λ6) (a2e2 + b2f2)} (2.28)

S3 =
(
a22 + b22

)
(λ1λ6 − λ3λ5) (2.29)

S4 =
(
a22 + b22

)
(λ1λ5 + λ3λ6) (2.30)

3. RESULTS & DISCUSSION

The velocity distributions for the primary and secondary flows have been shown in figures

(3.1) to (3.14) illustrate the effect of the parameters α, λ and μ corresponding to both the

liquids occupying different heights for both porous and non-porous cases.

The velocity distribution for the primary flow have been shown in Figs. 2(a) and (b) to

illustrate the effect of the parameters α, μ and λ for ε = −0.4when β =0 and 1. As α
increase the primary flow decreases at point of the channel irrespective of the existence of the

porosity. With increase of λ and μ the primary flow depreciates irrespective of the existence of

the porosity. The significance of β is marginal.

(a) (b)

FIGURE 2. (a) and (b) are velocity profiles for the primary flow.
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Figures 3(a) and (b) show the primary flow at ε = 0 for β = 0 and 1. With increase of α, μ
and λ the primary flow decreases in both cases. The results are in agreement with RamanaRao

and Narayana (1980) for β = 0 and ε = 0.

(a)

(b)

FIGURE 3. (a) and (b) are velocity profiles for the primary flow.

Figures 4(a) and (b) represent the primary flow at ε = 0.6 for β = 0 and 1. With increase

of α, μ and λ the primary flow decreases, for large values of α and μ the primary flow changes

from negative to positive as we move from zone-II to zone-I irrespective of the existence of the

porosity.

(a) (b)

FIGURE 4. (a) and (b) are velocity profiles for the primary flow.

The velocity distribution for secondary flow have been shown in Figs. 5(a) and (b) for

ε = −0.4when β = 0 and 1. The secondary flow depreciates with increase of α, μ and λ
for β = 0 and 1. The secondary velocity changes from positive to negative as we move from

zone-II to zone-I for large values of α, μ and λ.
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(a)
(b)

FIGURE 5. (a) and (b) are velocity profiles for the secondary flow.

Figures 6(a) and (b) show the secondary flow for β = 0 and 1 when ε = 0. It is concluded

that the secondary flow depreciates with increase in any one of the parameters irrespective of

the existence of the porosity. Similar results were found by RamanaRao & Narayana (1980)

for ε = 0 and β = 0.

(a) (b)

FIGURE 6. (a) and (b) are velocity profiles for the secondary flow.

Figures 7(a) and (b) show the secondary flow for ε = 0.6 for β = 0 and 1. The secondary

flow depreciates with increase in any one of the parameters irrespective of the existence of the

porosity.
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(a)
(b)

FIGURE 7. (a) and (b) are velocity profiles for the secondary flow.

With the increase of the interface the primary flow enhances for β = 0 and 1 (in Fig. 8(a)),

the secondary flow depreciates for β = 0 and 1 (in Fig. 8(b)).

(a) (b)

FIGURE 8. (a) and (b) are velocity profiles for the secondary flow.

The skin-friction amplitude at the upper and lower plates has been shown in Fig. 9 to Fig.

13 for various parameters. The skin-friction at the lower plate is greater than that of the upper

plate.

(a) (b)

FIGURE 9. (a) and (b) are skin-friction amplitude at the upper plate.
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(a) (b)

FIGURE 10. (a) and (b) are skin-friction amplitude at the upper plate.

(a)
(b)

FIGURE 11. (a) and (b) are skin-friction amplitude at the lower plate.

(a)
(b)

FIGURE 12. (a) and (b) are skin-friction amplitude at the lower plate.
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(a) (b)

FIGURE 13. (a) and (b) are skin-friction amplitude at the lower plate.

The skin-friction amplitude is found to increase at the upper plate with increase of α while

λ andμ are fixed for ε = −0.4, 0 and 0.6 irrespective of the existence of the porosity. As

λ andμ increases the skin-friction amplitude at the upper plate increases, the remaining values

being fixed for ε = −0.4, 0 and 0.6 irrespective of the existence of the porosity.

As ε value increases the skin-friction at the upper plate decreases for large values of α and

slightly increases for the remaining parameters being fixed whether there is porosity or not.

The skin-friction amplitude is found to be increase at the lower plate with increase of α the

remaining values being fixed for ε = −0.4 and 0 irrespective of the existence of the poros-

ity.The skin-friction at the lower plate decreases at α =2, when ε = 0.6 for both porous and

non-porous cases, while μand λ being fixed. As μincreases the skin-friction amplitude at the

lower plate decreases for ε = −0.4, 0 and 0.6 irrespective of the existence of the porosity,

while α and λ being fixed.

As λ increases the skin-friction at the lower plate decreases for ε = −0.4 and 0, it remains

constant for ε = 0.6, while α and μ being fixed. This result holds for both porous and non-

porous cases. As εincreases from −0.4 to 0.6 the skin-friction amplitude at the lower plate

decreases for various parameters whether there is porosity or not.

4. CONCLUSION

The primary flow of the upper liquid increases to 1, from its value at z = ε, where as that

of the lower liquid increases from zero to its value at z = ε, both the values at z = ε being the

same. The secondary flow of the upper liquid decreases to zero from its value at z = ε whereas

that of the lower liquid increases from zero to its value at z = ε, both the values at z = ε being

the same. This results valid for small values of α, μ and λ. For large values of α, μ and λ, the

secondary flow of the upper liquid increases to zero from its value at z = ε whereas that of the

lower liquid decreases from zero to its value at z = ε, both the values at z = ε being the same.

In this analysis we discuss the effect of suction parameter β and position of the interface on

the flow phenomena in the case of Couette flow. It is found that the variation in ε leads to an

enhancement in the primary flow and depreciation in the secondary flow irrespective of β.
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In the absence of porosity (β =0), the secondary velocity changes from positive to negative

as we move from zone-II to zone-I. The region of transition from positive to negative enlarges

with increase in the interface ε, while for β 	= 0 the transition zone depreciates in zone-II and

enlarges in zone-I for ε = 0.6 the transition zone enlarge marginally in both the zones.
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