• Title/Summary/Keyword: Parallel transport frame

Search Result 6, Processing Time 0.018 seconds

A NEW TYPE OF TUBULAR SURFACE HAVING POINTWISE 1-TYPE GAUSS MAP IN EUCLIDEAN 4-SPACE 𝔼4

  • Kisi, Ilim;Ozturk, Gunay
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.923-938
    • /
    • 2018
  • In this paper, we handle the Gauss map of a tubular surface which is constructed according to the parallel transport frame of its spine curve. We show that there is no tubular surface having harmonic Gauss map. Moreover, we give a complete classification of this kind of tubular surface having pointwise 1-type Gauss map in Euclidean 4-space ${\mathbb{E}}^4$.

Proposing a Connection Method for Measuring Differentiation of Tangent Vectors at Shape Manifold (형태 다양체에서 접벡터 변화량을 측정하기 위한 접속 방식 제안)

  • Hahn, Hee-Il
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.160-168
    • /
    • 2013
  • In this paper an algorithm that represents shape sequences with moving frames parallel along the sequences are developed. According to Levi-Civita connection, it is not easy to measure the variation of the vector fields on non-Euclidean spaces without tools to parallel transport them. Thus, parallel transport of the vector fields along the shape sequences is implemented using the theories of principal frame bundle and analyzed via extensive simulation.

Design for Hydraulic Hose Routing Pathes and Fitting Angles (유압 호스의 경로 생성 및 피팅 배열각 설계)

  • Kim Y.S.;Kim J.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.40-48
    • /
    • 2005
  • A hydraulic hose is an important part of the hydraulic system which transmits power using pressurized fluids. It allows relative motion between components at each end of the hose assembly, and it is much easier to route a hose assembly than it is to bend and install a rigid tubing assembly. Unnecessary loads, which drop the hose's pressure capability and shorten service life, depend on a hose-routing. Therefore, the Hydraulic system designers must be aware to consider unnecessary load does not affect the here. For this consideration in an early stage of the design process, CAD system must support the hose assembly routing design function which is to generate routing path and design fitting angle properly. This paper proposes 2 methods. One is to generate curves that are similar to routing paths of the real hose assembly using the energy minimization method and the optimization method. The other is to design fitting angles that are important design elements of a hose assembly using the Parallel Transport Frame. To implement the proposed methods above, commercial CAD software, CATIA has been integrated with our program.

HOG based Pedestrian Detection and Behavior Pattern Recognition for Traffic Signal Control (교통신호제어를 위한 HOG 기반 보행자 검출 및 행동패턴 인식)

  • Yang, Sung-Min;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1017-1021
    • /
    • 2013
  • The traffic signal has been widely used in the transport system with a fixed time interval currently. This kind of setting time was determined based on experience for vehicles to generate a waiting time while allowing pedestrians crossing the street. However, this strict setting causes inefficient problems in terms of economic and safety crossing. In this research, we propose a monitoring algorithm to detect, track and check pedestrian crossing the crosswalk by the patterns of behavior. This monitoring system ensures the safety for pedestrian and keeps the traffic flow in efficient. In this algorithm, pedestrians are detected by using HOG feature which is robust to illumination changes in outdoor environment. According to a complex computation, the parallel process with the GPU as well as CPU is adopted for real-time processing. Therefore, pedestrians are tracked by the relationship of hue channel in image sequence according to the predefined pedestrian zone. Finally, the system checks the pedestrians' crossing on the crosswalk by its HOG based behavior patterns. In experiments, the parallel processing by both GPU and CPU was performed so that the result reaches 16 FPS (Frame Per Second). The accuracy of detection and tracking was 93.7% and 91.2%, respectively.

An Inductance Voltage Vector Control Strategy and Stability Study Based on Proportional Resonant Regulators under the Stationary αβ Frame for PWM Converters

  • Sun, Qiang;Wei, Kexin;Gao, Chenghai;Wang, Shasha;Liang, Bin
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1110-1121
    • /
    • 2016
  • The mathematical model of a three phase PWM converter under the stationary αβ reference frame is deduced and constructed based on a Proportional-Resonant (PR) regulator, which can replace trigonometric function calculation, Park transformation, real-time detection of a Phase Locked Loop and feed-forward decoupling with the proposed accurate calculation of the inductance voltage vector. To avoid the parallel resonance of the LCL topology, the active damping method of the proportional capacitor-current feedback is employed. As to current vector error elimination, an optimized PR controller of the inner current loop is proposed with the zero-pole matching (ZPM) and cancellation method to configure the regulator. The impacts on system's characteristics and stability margin caused by the PR controller and control parameter variations in the inner-current loop are analyzed, and the correlations among active damping feedback coefficient, sampling and transport delay, and system robustness have been established. An equivalent model of the inner current loop is studied via the pole-zero locus along with the pole placement method and frequency response characteristics. Then, the parameter values of the control system are chosen according to their decisive roles and performance indicators. Finally, simulation and experimental results obtained while adopting the proposed method illustrated its feasibility and effectiveness, and the inner current loop achieved zero static error tracking with a good dynamic response and steady-state performance.

Semantic Depth Data Transmission Reduction Techniques using Frame-to-Frame Masking Method for Light-weighted LiDAR Signal Processing Platform (LiDAR 신호처리 플랫폼을 위한 프레임 간 마스킹 기법 기반 유효 데이터 전송량 경량화 기법)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1859-1867
    • /
    • 2021
  • Multi LiDAR sensors are being mounted on autonomous vehicles, and a system to multi LiDAR sensors data is required. When sensors data is transmitted or processed to the main processor, a huge amount of data causes a load on the transport network or data processing. In order to minimize the number of load overhead into LiDAR sensor processors, only semantic data is transmitted through data comparison between frames in LiDAR data. When data from 4 LiDAR sensors are processed in a static environment without moving objects and a dynamic environment in which a person moves within sensor's field of view, in a static experiment environment, the transmitted data reduced by 89.5% from 232,104 to 26,110 bytes. In dynamic environment, it was possible to reduce the transmitted data by 88.1% to 29,179 bytes.