• Title/Summary/Keyword: Parallel link

Search Result 248, Processing Time 0.031 seconds

Development of 6 DOF Positioning Manipulator Using Closed Loop Structure and Its Kinematic Analysis (폐루프 구조를 가지는 6 자유도 머니퓰레이터의 개발 및 기구학적 해석)

  • 김경찬;우춘규;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 1998
  • Parallel link manipulators have an ability of more precise positioning than serial open-loop manipulators. However. general parallel link manipulators have been restricted to the real applications since they have limited workspace due to interference among actuators. In this study, we suggest a closed-loop manipulator with 6 degrees-of-freedom and with enlarged workspace. It consists of two parts for minimizing the interference among actuators. One part is lower structure with planar 3 degrees-of-freedom and the other is upper one with spatial 3 degrees-of-freedom. Forward kinematics and inverse kinematics are solved, research about singularity points are carried out and workspace is evaluated. The comparison of workspace between Stewart platform, which is the typical parallel link manipulator, and the suggested manipulator shows that the workspace of the latter is wider than that of the former. Especially, simulation results also show that the suggested manipulator is more suitable when there needs rotation in the end-effector.

  • PDF

Design of Robot Rotation Arm with Parallel Motion in End Effector (말단 장치의 평면 유지가 가능한 로봇 회전 암의 설계)

  • Lee, Jong-Shin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.359-366
    • /
    • 2010
  • This study proposes the design method for the robot rotation arm which the end effector that is connected in end of the arm keeps parallel motion even though the robot arm rotates. So far, most robot arm rotates together the end effector when the arm rotates. For this, this study proposes the mechanism that the arm is linked to each 4 parallel link so that rotation is possible by 4 pins, and the rotation arm connects 2 joints of diagonal line direction to a link in each 4 joint for rotation, and designs so that can change length of the link. For verification of design, this study targeted that develop the rotation arm for medical examination that use in ophthalmology. It is important that a medical robot offers comport to patient and design compactly so that medical examination and treatment space may can be defined enough. It is designed so that all drive elements may be positioned on interior of the arm and optimization of design for main parts was carried out in this study for this. The robot arm which is developed in this study manufactured to use by medical phoropter arm, and got good result by an experiment. The robot rotation arm which is proposed in this study is judged to contribute very effectively in case use of a medical robot arm for medical examination and treatment, also the robot arm which the end effector that is connected in the end of the arm needs to keep parallel motion. And, the robot arm which is developed in this study made an application as license.

A study on the control-in-the-small characteristics of a planar parallel mechanism (평면형 병렬 메카니즘의 국소적 제어 특성에 관한 연구)

  • Kim, Whee-kuk;Cho, Whang;Kim, Jae-Seoub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.360-371
    • /
    • 1998
  • In this paper, output precision characteristics of a planar 6 degree-of-freedom parallel mechanisms are investigated, where the 6 degree-of-freedom mechanism is formed by adding an additional link along with an actuated joint in each serial subchain of the planar 3 degree-of-freedom parallel mechanism. Kinematic analysis for the parallel mechanism is performed, and its first-order kinematic characteristics are examined via kinematic isotropic index, maximum and minimum input-output velocity transmission ratios of the mechanisms. Based on this analysis, two types of planar 6 degrees-of-freedom parallel manipulators are selected. Then, dynamic characteristics of the two selected planar 6 degree-of-freedom parallel mechanisms, via Frobenius norms of inertia matrix and power modeling array, are investigated to compare the magnitudes of required control efforts of both three large actuators and three small actuators when the link lengths of three additional links are changed. It can be concluded from the analysis results that each of these two planar 6 degrees-of-freedom parallel mechanisms has an excellent control-in-the-small characteristics and therefore, it can be very effectively employed as a high-precision macro-micro manipulator when both its link lengths and locations of small and large actuators are properly chosen.

  • PDF

Quasi-Parallel Resonant DC-link Inverter with One Additional Switching Device (하나의 추가 스위칭 소자를 갖는 유사병렬 공진형 DC-link 인버터)

  • 정용채
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.170-175
    • /
    • 2000
  • A new quasi-parallel resonant DC link inverter is proposed for three phase soft switching application. By i inserting only one additional switch, the proposed inverter excludes both voltage stresses and restricted PWM p problems, which are demerits of the conventional resonant inverter. In this paper, the circuit operations are e explained in detail using the operational mode analysis of the proposed inverter and design methods of the r resonant components are suggest('x:l. Lastly, the applicable possibility of the proposed inverter is vel예fied t through the experimental results.

  • PDF

Development of a parallel link typed wrist for robotic precision assembly (정밀조립을 위한 병렬다관절 구조를 가진 로봇손목기구의 개발)

  • 문창렬;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.281-286
    • /
    • 1993
  • In this paper, a parallel link typed wrist is developed for robotic precision assembly. The developed wrist can make the corrective motion required for compensating lateral and tilting errors. The mechanism of this wrist is one example of a motion simulator generating 6 DOF motion in space by 6 actuators connected in paralle. To make the wrist more compact, miniature DC motors containing reduction gears and servo system were used. The parallel link architecture enables a high positioning accuracy and high nominal load capacity. In this study, inverse kinematic problem is solved by using a Denavet-Hartenberg method and a simulational result about workspace of the proposed parallel mechanism is obtained.

  • PDF

Performance evaluation of the single-dwell and double-dwell detection schemes in the IS-95 reverse link (IS-95역방향 링크에서 단일 적분 및 이중 적분 검색 방식의 성능 분석)

  • 강법주;박형래;손정영;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.383-393
    • /
    • 1996
  • This paper considers the evaluation of the ecquistion performance for an accesschannel preamble based on a random access procedure of direct sequence code division multiple access(DS/CDMA) reverse link. The parallel acquistion technique that employs the single-well detection scheme and the multiple-dwell(double-dwell) detection scheme is mentioned. The acquisition performance for two detection schemes is compared in therms of the acquisition probability and the acquisition time. The parallel acquisition is done by a bank of N parallel I/Q noncoherent correlators. Expressions on the detection, false alarm, and miss probabilities of the single-dwell and multiple-dwell(double-well) detection schemes are derived for multiple H$_{1}$ cells and multipath Rayleight fading channel. comparing the single-dwell detection scheme with the multiple-dwell(double-dwell) detection scheme in the case of employing the parallel acquisition technique in the reverse link,the numerical results show that the single-dwell detection scheme deomonstrates a better performance.

  • PDF

Error Model and Accuracy Analysis of a Cubic Parallel Device

  • Lim, Seung-Reung;Park, Woo-Chun;Song, Jae-Bok;Daehie Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.75-80
    • /
    • 2001
  • An error analysis is very important to estimate performance of a precision machine. This study proposes an error analysis for a new parallel device, a cubic parallel device. The cubic parallel manipulator has error sources including upper and lower universal joint errors due to the directional changes in the link and actuation errors. The maximum errors of the end effector are affected by the axial direction changes of each links and the clearances of the universal joints when the parallel manipulator is moving along a path. It is found that the changes of errors mostly occur at the positions where the directions of exerting link forces shift. The error analysis is based on an error model formed from the relation between the universal point errors and the end-effector accuracy. The analysis method can be also used in predicting the accuracy of other parallel devices.

  • PDF

Dynamic Modeling for 6-DOF Parallel Machine Tool (6 자유도 병렬 공작기계를 위한 동역학 모델링)

  • 조한상;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1013-1016
    • /
    • 1995
  • This paper deals with dynamics and control of a PRP6-DOF parallel manipulator. Dynamic modeling includes the effect of inertia of all links in the mechanism to increase modeling accuracy. Kinematic analysis about forward and inverse kinematics is also explained. Using Lagrange-D' Alambert method we get equations of motions in a link space which fully represent 6DOF motions of the manipulator.

  • PDF

Development of 3 D.O.F parallel robot's simulator for education

  • Yoo, Jae-Myung;Kim, John-Hyeong;Park, Dong-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2290-2295
    • /
    • 2005
  • In this paper, it is developed simulator system of 3 D.O.F parallel robot for educate of expertness. This simulator system is composed of three parts ? 3 D.O.F parallel robot, controller (hardware) and software. First, basic structure of the robot is 3 active rotary actuator that small geared step motor with fixed base. An input-link is connected to this actuator, and this input-link can connect two ball joints. Thus, two couplers can be connected to the input-link as a pair. An end-plate, which is jointed by a ball joint, can be connected to the opposite side of the coupler. A sub-link is produced and installed to the internal spring, and then this sub-link is connected to the upper and bottom side of the coupler in order to prevent a certain bending or deformation of the two couplers. The robot has the maximum diameter of 230 mm, 10 kg of weight (include the table), and maximum height of 300 mm. Hardware for control of the robot is composed of computer, micro controller, pulse generator, and motor driver. The PC used in the controller sends commands to the controller, and transform signals input by the user to the coordinate value of the robot by substituting it into equations of kinematics and inverse kinematics. A controller transfer the coordinate value calculated in the PC to a pulse generator by transforming it into signals. A pulse generator analyzes commands, which include the information received from the micro controller. A motor driver transfer the pulse received from the pulse generator to a step motor, and protects against the over-load of the motor Finally, software is a learning purposed control program, which presents the principle of a robot operation and actual implementation. The benefit of this program is that easy for a novice to use. Developed robot simulator system can be practically applied to understand the principle of parallel mechanism, motors, sensor, and various other parts.

  • PDF