• Title/Summary/Keyword: Parallel kinematic

Search Result 211, Processing Time 0.029 seconds

Development and Experiment of a Micropositioning Parallel Manipulator (마이크로포지셔닝 병렬평행기구의 개발 및 실험)

  • Cha, Young-Youp;Yoon, Kwon-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.543-547
    • /
    • 2009
  • This paper describes the design, simulation, development, and experiment of a six degree-of-freedom micropositioning parallel manipulator. A movable stage was supported with six links, each of which extends with a dc-servo micropositioning actuator. In case of parallel manipulator, while the solution of the inverse kinematics is easily found by the vectors of the links which are composed of the joint coordinates in base and platform, but forward kinematic is not easily solved because of the nonlinearity and complexity of the parallel manipulator's kinematic output equation with the multi-solutions. The movable range of the prototype was ${\pm}25mm$ in the x- and y-directions and ${\pm}12.5mm$ in the z-direction. The minimum incremental motion of the prototype was $1{\mu}m$ in the x- and y-directions and $0.5{\mu}m$ in the z-direction. The repeatability of the prototype was ${\pm}2{\mu}m$ in the x- and y-directions and ${\pm}1{\mu}m$ in the z-direction. The motion performance was also evaluated by not only the computer simulation of CAD model but also the experiment using a capacitive sensor system.

Internal singular configuration analysis and adaptive fuzzy logic control implementatioin for a planar parallel manipulator (평면형 병렬 매니퓰레이터의 내부 특이형상 해석 및 적응 퍼지논리제어 구현)

  • Song, Nak-Yun;Cho, Whang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.81-90
    • /
    • 2000
  • Parallel manipulator is suitable for the high precise task because it than has higher stiffness, larger load capacity and more excellent precision, due to the closed-lop structure, than serial manipulator. But the controller design for parallel manipulator is difficult because the parallel manipulator has both the complexity of structure and the interference of actuators. The precision improvement of parallel manipulator using a classical linear control scheme is difficult because the parallel manipulator has the tough nonlinear characteristics. In this paper, firstly, the kinematic analysis of a parallel manipulator used at the experiments is performed so as to show the controllability. The analysis of internal singular configuration of the workspace is performed using the kinematic isotropic index so a sto show the limitation of control performance of a simple linear controller with fixed control gains. Secondly, a control scheme is designed by using an adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller is often used for the control of nonlinear system because it has both the inference ability and the learning ability. Lastly, the effeciency of designed control scheme is demonstrated by the real-time control experiments with IBM PC interface logic H/W and S/W of my won making. The experimental results was a success.

  • PDF

Kinematic Modeling of Chained Form Mobile Robot

  • Han, Jae-Yong;Lee, Jae-Hoon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2057-2062
    • /
    • 2003
  • Chained form mobile robots have been studied from the viewpoint of the control and analysis of nonholonomic mechanical systems in literature. However, researches for the detailed closed form kinematic modeling are rarely progressed. Nothing that a chained form mobile robot can be considered as a parallel system including several chains and wheels, the transfer method using augmented generalized coordinates is applied to obtain inverse and forward kinematic models of chained form mobile robots. Various numerical simulations are conducted to verify the effectiveness of the suggested kinematic model.

  • PDF

Complete Parameter Identification of Gough-Stewart platform with partial pose measurements using a new measurement device

  • Rauf, Abdul;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.825-830
    • /
    • 2004
  • Kinematic calibration of Gough-Stewart platform using a new measurement device is presented in this paper. The device simultaneously measures components of position and orientation using commercially available gadgets. Additional kinematic parameters are defined to model the sources of inaccuracies for the proposed measurement device. Computer simulations reveal that all kinematic parameters of the Gough-Stewart platform and the additional kinematic parameters of the measurement device can be identified with the partial pose measurements of the device. Results also show that identification is robust for the initial errors and the noise in measurements. The device also facilitates the automation of easurement procedure.

  • PDF

Study on Kinematic Calibration of a Parallel-typed Machining Center Tool (병렬기구형 공작기졔의 기구학적 보정에 관한 연구)

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2237-2244
    • /
    • 2002
  • This research develops a low-cost and high accuracy kinematic calibration method based on the following principles: 1) the platform locations are accurately measured by a constrained movement to inspect a calibration target; 2) the constrained movement is chosen to guarantee the parameter observability; 3) the mechanical fixture to constrain the movement and the sensor to check the constrained movement are implemented by low-cost and high-accuracy devices; 4) the calibration is easily done at an industrial environment. The kinematic parameters calibrated with respect to a single plane aren't influenced due to the misalignment of the plane. A parameter observability is successfully obtained even through one planar constraint, which guarantees that all kinematic parameters are estimated by minimizing the cost function.

Forward Velocity Estimation Algorithm for Planar Mobile Robots

  • Lee, Seung-Eun;Kim, Wheekuk;Yi, Byung-Ju;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51.5-51
    • /
    • 2001
  • The sliding and/or skidding motions generally occur to a car - like planar mobile robot consisting of four conventional fixed wheels attached on two parallel axles. Thus, the kinematic model of such mobile robot should include the description of skidding and sliding frictional motions. However, most of previous kinematic models do not take these frictional motions into account the kinematic model, as the work done by Muir and Newman [1]. Thus, does it result in least square solution in estimating sensed forward velocity. In this paper, the sensed forward velocity estimation algorithm for mobile robots is proposed, which not only includes those skidding and sliding frictional motions into kinematic model but also utilizes only the minimal set of dependent internal kinematic variables of the mobile robot. Then, ...

  • PDF

Kinematic Analysis of Multi Axis Shaking Table for Multi-Purpose Test of Heavy Transport Vehicle (고하중 차량의 다목적 테스트를 위한 다축 가진 테이블의 기구학 해석)

  • Jin, Jae-Hyun;Na, Hong-Cheoul;Jeon, Seung-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.823-829
    • /
    • 2012
  • An excitation table is commonly used for vibration and ride tests for parts or assemblies of automobiles, aircrafts, or other heavy systems. The authors have analyzed several kinematic properties of an excitation table that is under development for heavy transport vehicles. It consists of one table and 7 linear hydraulic actuators. The authors have performed mobility analysis, inverse kinematics, forward kinematics, and singularity analysis. Especially, we have proposed a fast forward kinematic solution considering the limited motion of the excitation table. On the assumption that the motion variables such as rotation angles and displacements are small, the forward kinematic problem is converted to the observer problem of a linear system. This provides a fast solution. Also we have verified that there are no singularity points in the working range by numerical analysis.