• 제목/요약/키워드: Parallel flow channel

검색결과 134건 처리시간 0.036초

CFD를 이용한 병열 배열형 상향류식 침전지 수리해석에 관한 연구(II) - 침전지 내 유입유량 균등성 향상을 위한 유입 분배수로 개선 - (Evaluation of hydraulic behavior within parallel arranged upflow sedimentation basin using CFD simulation(II) -A CFD methodology for the design of distribution channel for improving inlet equity)

  • 박노석;김성수;최종웅;왕창근
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.217-223
    • /
    • 2014
  • In order to suggest the methodology for improving the equity of flow distribution in open channel with multiple outlet, CFD simulations were carried out for actual scale distribution channel being operated in domestic G_WTP(Water Treatment Plant). Also, before and after installing the longitudinal multi hole(diameter=250 mm, 116 holes) baffle suggested by this research, turbidity measurements data were collected for evaluating the effects of hydraulic modification for inlet flow equity. From the both results, total turbidity of settled water was lowered by 30 % and equity of flow distribution was improved about 60 % compared with before hydraulic structure modification.

병렬 사형유로를 채택한 냉각판을 통한 고분자 전해질 연료전지의 균일 냉각에 대한 전산유체역학 해석 연구 (Computational Fluid Dynamics Study on Uniform Cooling of Polymer Electrolyte Membrane Fuel Cells by Parallel Multi-pass Serpentine Flow Fields)

  • 류승호;백승만;남진현;김찬중
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.885-891
    • /
    • 2010
  • 고분자 전해질 연료전지(PEMFC)의 열관리는 성능 향상과 내구성 측면에서 중요한 문제이다. 일반적으로 냉각수 순환 유로를 가진 냉각판이 여러 개의 단전지 사이에 삽입되어 PEMFC 내부에서 발생하는 반응열을 외부로 배출한다. 본 연구에서는 개선된 병렬 사형유로(MPSFF)를 향상된 냉각성능을 가진 냉각판 유로형상으로 제안하고, 이를 전산유체역학(CFD) 해석을 통하여 평가하였다. 비교를 위하여 냉각수 유로로 일반적으로 사용되는 사형유로 및 병렬형유로의 냉각성능에 대한 계산도 수행하였다. CFD 결과는 개선된 병렬 사형유로가 냉각판 표면에서의 온도의 비균일도를 상당히 감소시키고, 따라서 PEMFC의 내구성과 성능을 향상시킬 수 있음을 보여주었다.

Step method 프로그램을 이용한 orifice 분배수로의 최적 설계에 관한 연구 (Optimal Design of Orifice typed Distribution Channel using Step Method Program)

  • 박노석;박상철;김성수;이선주;정남정
    • 상하수도학회지
    • /
    • 제20권5호
    • /
    • pp.691-700
    • /
    • 2006
  • This study conducted to optimize the design and operation of orifice typed distribution channels which were generally constructed to link the rapid mixing process and flocculation/sedimentation basin. To accomplish the goal of this study, programming step method using FORTRAN 90, was applied it to simulate the performance of existing distribution channel in the selected S DWTP (Drinking Water Treatment Plant). The proposed step method program was validated in terms of the feasibility with comparison between the measurement and prediction value in each orifice. From the evaluation results of the current conditions with the design and operation, it was revealed that the existing gradient of the tapered channel is not appropriate. Also, we suggested that in the case of the inlet width being 3.5m, reducing the downstream width by about 0.5m would make more equitable distribution flow in the channel. Consequently, dealing with various conditions of the design and operation with distribution channel, we could conclude that for the parallel typed channel, as the width is wider and the diameter of orifice is smaller, the more equitable distribution occur. In addition, the inlet flowrate and the number of orifice can affect the flow velocity in the channel.

다수의 장애물을 가진 유동채널에서의 강제 대류에 관한 연구 (Forced Convection in a Flow Channel with Multiple Obstacles)

  • 남평우;조성환
    • 태양에너지
    • /
    • 제9권1호
    • /
    • pp.62-69
    • /
    • 1989
  • This analysis is to investigate the influence of inflow angle when cooling air flows into PC (Printed Circuit) board channels. Flow between PC board channels with heat generating blocks is assumed laminar, incompressible, two-dimensional. Geometric parameters (block spacing (S), block height (H), block width (W) and channel height (L)) are held fixed. Inflow angle variations are $-10^{\circ},\;0^{\circ},\;10^{\circ}$, where uniform heat flux per unit axial length Q (W/m) from heated block surfaces is generated. The governing equations for velocity and temperature are solved by SIMPLE (Semi-Implicit Method Pressure for Linked Equation) algorithm. Nusselt number on each block surfaces is analyzed after a numerical calculation result. The result shows that the assumption on parallel inflow (inflow angle to channel, $0^{\circ}$) to PC board channels can be used without large error even when inflow' angle is varied.

  • PDF

휴대용 컴퓨터 내에 실장된 강제공랭 모듈 주위의 유체유동과 온도분포 (Fluid Flow and Temperature Distribution Around a Surface-Mounted Module Cooled by Forced Air Flow in a Portable Personal Computers)

  • 박상희;신대종
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.238-246
    • /
    • 2004
  • This paper reports an experimental study around a module about forced air flow by blower (35${\times}$35${\times}$6㎣) in a portable personal computer model(200${\times}$235${\times}$10㎣). Experimental report is to know three data to investigate thermal resistance, adiabatic wall temperature and visualized fluid flow around the module by combination of the moving number and the arrangement method of blower. The channel inlet flow velocity has been varied between 0.26, 0.52 and 0.78㎧, and input power ( $Q_{p}$) to the module is 4W. To investigate thermal resistance. the heated module is mounted on two boards(110${\times}$110${\times}$1.2㎣, k=20.73, 0.494W/ $m^{\circ}C$) in parallel-plate channel to forced air flow. The temperature distribution were visualized by heated module on acrylic board(k=0.262W/ $m^{\circ}C$) using liquid crystal film. Fluid flow around the module were visualized using particle image velocimetry system.

유동관성에 따른 Micro-Gap 판형 열교환기 내부 유동분배 수치해석 (Numerical Study of the Inertia Effect on Flow Distribution in Micro-gap Plate Heat Exchanger)

  • 박장민;윤석호;이공훈;송찬호
    • 대한기계학회논문집B
    • /
    • 제38권11호
    • /
    • pp.881-887
    • /
    • 2014
  • 본 연구에서는 micro-gap 판형 열교환기 내부의 열유동 특성에 대한 수치해석을 수행하였다. 특히 유량 조건에 따라 열교환기의 주 채널로부터 각 micro-gap 으로의 유동분배에 대한 유동관성의 영향에 대하여 조사하였다. 열교환기 주 채널의 유동을 레이놀즈 수 100 부터 10000 까지 변화시키며 그에 따른 각 micro-gap 으로의 유동분배와 온도분포의 불균일 정도를 평가하였다. 수치해석 결과 유동분배는 유동관성에 의해 크게 영향을 받는 것으로 나타났으며, 관성 효과를 감소시킬 수 있는 헤더 설계를 통해 유동분배 불균일 정도를 줄일 수 있었다. 또한 micro-gap 을 통과한 유체의 온도분포의 불균일 정도는 주유량이 증가함에 따라 증가 후 감소 추세를 나타냈다.

평판관 열교환기 내 공기-물 2상류 분지 (Distribution of Air-Water Two-Phase Flow in a Flat Tube Heat Exchanger)

  • 김내현;박태균;한성필;신태룡
    • 설비공학논문집
    • /
    • 제18권9호
    • /
    • pp.687-697
    • /
    • 2006
  • The air and water flow distribution are experimentally studied for a heat exchanger composed of round headers and 10 flat tubes. The effects of tube protrusion depth as well as mass flux, and quality are investigated, and the results are compared with the previous 30 channel results. The flow at the header inlet is annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted geometry, significant portion of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, different from the downward configuration, significant portion of the water flows through the rear part of the header. The effect of the protrusion depth is the same as that of the downward flow. As the protrusion depth increases, more water is forced to the rear part of the header. However, the effect of mass flux or quality is opposite to the downward flow case. As the mass flux or quality increases, more water flows through the frontal part of the header. Compared with the previous thirty channel configuration, the present ten channel configuration yields better flow distribution. Possible explanation is provided from the flow visualization results.

채널 형상에 따른 마이크로채널 판형 열교환기 열전달 성능 향상에 관한 수치 연구 (Numerical Study of Heat Transfer Enhancement on Microchannel Plate Heat Exchanger with Channel Shape)

  • 전승원;김윤호;이규정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1888-1893
    • /
    • 2007
  • In this study, the microchannel plated heat exchanger were numerically studied for the enhancement of heat transfer in the channel configuration. Unit cold and hot fluid region with the microchannel were modeled and periodic boundary condition at the side wall was applied to continuously repeating geometry. The material of micro-structured plate is STS304 and working fluid is water. Triangular obstacles were placed in micro channel to enhance heat transfer. The performance of microchannel plated heat exchangers were numerically investigated with various obstacle configuration and Reynolds number under the parallel and counter flows. Heat transfer rate has increased about 18% compared with straight channel, but pressure drop also increased about 3.5 times. The main factor of increasing of pressure drop and heat transfer rate is considered that the momentum was lost to collide against obstacles, generation of secondary flow and boundary layer separation, wake and vortex forming phenomena.

  • PDF

채널부분의 초전도 자속 흐름 트랜지스터 볼텍스 동력학 (Vortex Dynamics of Superconducting Flux Flow Transistor in a Channel)

  • 고석철;강형곤;임성훈;이종화;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.546-549
    • /
    • 2003
  • The principle of the superconducting vortex flow transistor (SVFT) is based on control of the Abrikosov vortex flowing along a channel. The induced voltage is controlled by a bias current and a control current, instead of external magnetic field. The device is composed of parallel weak links with a nearby current control line. We explained the process to get an I-V characteristic equation and described the method to induce the external and internal magnetic field by the Biot-Savarts law in this paper. The equation can be used to predict the I-V curves for fabricated device. From the equation we demonstrated that the current-voltage characteristics were changed with input parameters. I-V characteristics were simulated to analyze a SVFT with multi-channel by a Matlab program.

  • PDF

정상압력 유동 하에서 전기유변유체의 동적 응답 (Dynamic Responses of Electrorheological Fluid in Steady Pressure Flow)

  • 남윤주;박명관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2879-2884
    • /
    • 2007
  • Dynamic responses of electrorheological (ER) fluids in steady pressure flow to stepwise electric field excitations are investigated experimentally. The transient periods under various applied electric fields and flow velocities were determined from the pressure behavior of the ER fluid in the flow channel with two parallel-plate electrodes. The pressure response times were exponentially decreased with the increase of the flow velocity, but increased with the increase of the applied electric field strength. In order to investigate the cluster structure formation of the ER particles, it was verified using the flow visualization technique that the transient response of ER fluids in the flow mode is assigned to the densification process in the competition of the electric field-induced particle attractive interaction forces and the hydrodynamic forces, unlike that in the shear mode determined by the aggregation process.

  • PDF