• Title/Summary/Keyword: Parallel connecting

Search Result 155, Processing Time 0.032 seconds

New Efficient Direct Kinematics for 6-dof Parallel-Serial Haptic Devices

  • Song, Se-Kyong;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.83.2-83
    • /
    • 2001
  • This paper presents a new formulation approach to reduce computational burden of the direct kinematics of 6-dof haptic devices with three sets of a parallel-serial linkage. Their direct kinematics has been formulated through employing the Denavit-Hartenberg notation, which results in complicated formulation procedures and heavy computational burden. For reducing these problems, this paper reconfigures the haptic devices into an equivalent kinematic model of the 3-6 Stewart-Gough Platform that has three connecting joints on the moving platform. Moreover, the direct kinematics of the 3-6 Platform can be effectively formulated by using the proposed Tetrahedron Approach.

  • PDF

Analysis of Parallel Characteristics for Virtual Implement of 50[W]Solar Cell modules (태양전지 가상구현 시스템[50W]의 병렬연결 출력특성에 대한 분석)

  • Lee, B.I.;Jung, B.H.;Jeon, Y.S.;Choe, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.362-364
    • /
    • 2003
  • Generally, photovoltaic system is composed a number of solar cells array. so, virtual implementation module for solar cell array is needed Parallel connection each module for extract the power. A desirable characteristic of a parallel supply system is that individual converters share the load current equally and stably. The current sharing(CS) can be implemented using two approaches. The first one, known as a droop method, relies on the high output impedance of each converter. and The second approach, known as active current-sharing techniques. In this paper, analyze for better control logic of parallel connecting virtual implements of solar cell at using droop method.

  • PDF

Development of a Parallel-Serial Robot Arm for Propeller Grinding (프로펠러 연삭작업을 위한 병렬-직렬 로보트 암 개발)

  • Lee, Min Ki;Choi, Byung Oh;Jung, Jong Yoon;Park, Kun Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.146-158
    • /
    • 1996
  • This paper develops a robot arm for propeller blade grinding. The grinding work requires a high stiffness robot arm to reduce deformation and vibration which are generated during machining operation. Conventional articulated robots have serial connecting links from the base to the gripper. Thus, they have very weak structure to the stiffness for grinding operation. Stewart Platform is a typical parallel robotic mechanism with very high stiffness but it has small work space and large installation space. This research proposes a new grinding robot arm by combining parallel mechanism with serial mechanism. Therefore, the robot has large range of work space as well as high stiffness. This paper introduces the automatic system for propeller grinding utilizing the robot and the design of proposed robot arm.

  • PDF

Kinematic Analysis and Optimal Design of 2RPR-RP Parallel Manipulator (2RPR-RP 병렬 기구의 기구학 해석 및 최적설계)

  • Nam, Yun-Joo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1509-1517
    • /
    • 2005
  • This paper presents the two degree-of-freedom(DOF) planar parallel mechanism called 2R$\underline{P}$R-RP manipulator, whose degree-of freedom is dependent on a passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed analytically: the inverse and forward kinematic problems are solved in the closed font the practical workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters and the operating limits of the actuators, the optimization of the mechanism is performed considering its dexterity and stiffness. Finally, the kinematic performances of the optimized mechanism are evaluated through comparing to the 5-bar parallel manipulator.

Optimal Kinematic Design of Planar Parallel Mechanisms: Application to 2RRR-RP Mechanism (평면형 병렬 기구의 기구학적 최적설계: 2RRR-RP기구에 적용)

  • Nam Yun-Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.464-472
    • /
    • 2006
  • This paper presents the two degree-of-freedom (DOF) planar parallel mechanism, called the $2{\underline{R}}RR-RP$ manipulator, whose degree-of-freedom is dependent on an additional passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed: the inverse and forward kinematic problems are analytically solved, the workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters the optimization of the mechanism is performed considering its dexterity, stiffness, and space utilization. Finally, the kinematic performances of the optimized mechanism are evaluated through the comparison study to the conventional 5-bar parallel manipulator.

Characteristics of Transformer-Type SFCL according to the Connecting Methods of Secondary Coils (2차 권선의 연결방법에 따른 변압기형 초전도 한류기의 특성)

  • Cho, Yong-Sun;Park, Hyoung-Min;Chung, Soo-Bok;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2078-2083
    • /
    • 2007
  • We have analyzed operating characteristics of transformer-type superconducting fault current limiter (SFCL) according to the serial or parallel connections of secondary coils with $YBa_2Cu_3O_7$ (YBCO) thin films. The turn ratio between the primary and secondary coils was 63:21. Transformer-type SFCL using a transformer with secondary winding of serial or parallel coils could reduce the unbalanced quench caused by differences of the critical current density between YBCO thin films. We found that transformer-type SFCL having serial or parallel connections induced simultaneous quench between the superconducting units. The limiting current in the transformer-type SFCL with a parallel connection was lowered to 30 % compared to the SFCL with a serial connection. In the meantime, when the currents generated in the superconducting units were similar, the voltage value in the parallel connection was 60 % as low as that in the serial connection. However, the voltage generated in the primary winding was some higher. In conclusion, we found that transformer-type SFCL with parallel connection of secondary coils was more effective in fault current limiting characteristics and in the reduction of the consumption power for superconducting units compared to those of the transformer-type SFCL with serial connection of secondary coils.

High-speed simulation for fossil power plants uisng a parallel DSP system (병렬 DSP 시스템을 이용한 화력발전소 고속 시뮬레이션)

  • 박희준;김병국
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.4
    • /
    • pp.38-49
    • /
    • 1998
  • A fossil power plant can be modeled by a lot of algebraic equations and differential equations. When we simulate a large, complicated fossil power plant by a computer such as workstation or PC, it takes much time until overall equations are completely calculated. Therefore, new processing systems which have high computing speed is ultimately needed for real-time or high-speed(faster than real-time) simulators. This paper presents an enhanced strategy in which high computing power can be provided by parallel processing of DSP processors with communication links. DSP system is designed for general purpose. Parallel DSP system can be easily expanded by just connecting new DSP modules to the system. General urpose DSP modules and a VME interface module was developed. New model and techniques for the task allocation are also presented which take into account the special characteristics of parallel I/O and computation. As a realistic cost function of task allocation, we suggested 'simulation period' which represents the period of simulation output intervals. Based on the development of parallel DSP system and realistic task allocation techniques, we cound achieve good efficiency of parallel processing and faster simulation speed than real-time.

  • PDF

A Study for Mutual Interference of LCL Filter Under Parallel Operation of Grid-Connected Inverters (계통연계형 인버터 병렬운전 시 LCL 필터 상호간섭 특성 연구)

  • Lee, Gang;Seo, Joungjin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.75-81
    • /
    • 2021
  • This study analyzes the resonance characteristics caused by the mutual interference between LCL filters and the grid impedance under the parallel operation of the grid-connected inverter using the LCL filter. These characteristics are verified through simulation and experiment. Two inverters are used to connect to the grid in parallel, and the system parameters, including the LCL filter, are set to the same conditions. In the case of inverters running in parallel at the point of common coupling, the presence of grid impedance causes mutual interference between the LCL filters of each inverter, and the deviation of the filter resonance frequency is analyzed to understand the parallel inverter. The correlation between the number of devices and the size of grid impedance is simulated by PSIM and verified by MATLAB. By connecting the real-time digital simulator Typhoon HILS to the DSP 28377 control board, the mutual interference characteristics are tested under the condition of two inverters running in parallel. The experimental and analysis results are the same, indicating the validity of the analysis.

Analysis and Design of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6 자유도 역감제시장치의 설계 및 해석)

  • Yoon, Jung-son;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1178-1186
    • /
    • 2001
  • This paper presents design and analysis of a 6 degree-of-freedom new haptic device using a par-allel mechanism for interfacing with virtual reality. The mechanism is composed of three pantograph mecha-misms that, driven by ground-fixed servomotors. stand perpendicularly to the base plate. Three spherical joints connect the top of the pantograph with connecting bars, and three revolute joint connect connecting bars with a mobile joystick handle. Forward and inverse kinematic analyses have been performed and the Jacobian matrix is derived by using the screw theroy. Performance indices such as GPI(Global Payload Index), GCI(Global Conditioning index), Traslation and Orientation workspaces, and Sensitivity are evaluated to find optimal pa-rameters in the design stage. The proposed haptic mechanism has better load capability than those of the ex-isting haptic mechanisms due to the fact that motors are fixed at the base. It has also wider orientation work-space mainly due to RRR type spherical joints.

  • PDF

Photovoltaic Properties of Tandem Structure Consisting of Quantum Dot Solar cell and Small Molecule Organic Solar cell

  • Jang, Jinwoong;Choi, Geunpyo;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.249.2-249.2
    • /
    • 2015
  • Connecting two or more sub-cells is a simple and effective way of improving power conversion efficiency (PCE) of solar cells, and the theoretical efficiency of this tandem cell is known to reach 85~88% of the sum of the sub-cell's efficiencies. There are two ways of connecting sub-cells in the tandem structure, i.e. parallel and series connection. The parallel connection can increase the short circuit current (Jsc) and the series connection can increase the open circuit voltage (Voc). Although various tandem structures have been studied, the full use of incident light and optimization of cell efficiency is still limited. In this work, we designed series tandem solar cells consisting of lead sulfide (PbS) quantum dots/zinc oxide-based QDSC and zinc phthalocyanine (ZnPc)/C60-based small molecule OSCs. It is expected that the loss of the incident light is minimized because the absorption range of the PbS quantum dots and ZnPc is significantly different, and the Voc increases according to the Kirchhoff's law.

  • PDF