• 제목/요약/키워드: Parallel Encoding

Search Result 101, Processing Time 0.025 seconds

Voice Frequency Synthesis using VAW-GAN based Amplitude Scaling for Emotion Transformation

  • Kwon, Hye-Jeong;Kim, Min-Jeong;Baek, Ji-Won;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.713-725
    • /
    • 2022
  • Mostly, artificial intelligence does not show any definite change in emotions. For this reason, it is hard to demonstrate empathy in communication with humans. If frequency modification is applied to neutral emotions, or if a different emotional frequency is added to them, it is possible to develop artificial intelligence with emotions. This study proposes the emotion conversion using the Generative Adversarial Network (GAN) based voice frequency synthesis. The proposed method extracts a frequency from speech data of twenty-four actors and actresses. In other words, it extracts voice features of their different emotions, preserves linguistic features, and converts emotions only. After that, it generates a frequency in variational auto-encoding Wasserstein generative adversarial network (VAW-GAN) in order to make prosody and preserve linguistic information. That makes it possible to learn speech features in parallel. Finally, it corrects a frequency by employing Amplitude Scaling. With the use of the spectral conversion of logarithmic scale, it is converted into a frequency in consideration of human hearing features. Accordingly, the proposed technique provides the emotion conversion of speeches in order to express emotions in line with artificially generated voices or speeches.

Real-time multi-GPU-based 8KVR stitching and streaming on 5G MEC/Cloud environments

  • Lee, HeeKyung;Um, Gi-Mun;Lim, Seong Yong;Seo, Jeongil;Gwak, Moonsung
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.62-72
    • /
    • 2022
  • In this study, we propose a multi-GPU-based 8KVR stitching system that operates in real time on both local and cloud machine environments. The proposed system first obtains multiple 4 K video inputs, decodes them, and generates a stitched 8KVR video stream in real time. The generated 8KVR video stream can be downloaded and rendered omnidirectionally in player apps on smartphones, tablets, and head-mounted displays. To speed up processing, we adopt group-of-pictures-based distributed decoding/encoding and buffering with the NV12 format, along with multi-GPU-based parallel processing. Furthermore, we develop several algorithms such as equirectangular projection-based color correction, real-time CG overlay, and object motion-based seam estimation and correction, to improve the stitching quality. From experiments in both local and cloud machine environments, we confirm the feasibility of the proposed 8KVR stitching system with stitching speed of up to 83.7 fps for six-channel and 62.7 fps for eight-channel inputs. In addition, in an 8KVR live streaming test on the 5G MEC/cloud, the proposed system achieves stable performances with 8 K@30 fps in both indoor and outdoor environments, even during motion.

MLSE-Net: Multi-level Semantic Enriched Network for Medical Image Segmentation

  • Di Gai;Heng Luo;Jing He;Pengxiang Su;Zheng Huang;Song Zhang;Zhijun Tu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2458-2482
    • /
    • 2023
  • Medical image segmentation techniques based on convolution neural networks indulge in feature extraction triggering redundancy of parameters and unsatisfactory target localization, which outcomes in less accurate segmentation results to assist doctors in diagnosis. In this paper, we propose a multi-level semantic-rich encoding-decoding network, which consists of a Pooling-Conv-Former (PCFormer) module and a Cbam-Dilated-Transformer (CDT) module. In the PCFormer module, it is used to tackle the issue of parameter explosion in the conservative transformer and to compensate for the feature loss in the down-sampling process. In the CDT module, the Cbam attention module is adopted to highlight the feature regions by blending the intersection of attention mechanisms implicitly, and the Dilated convolution-Concat (DCC) module is designed as a parallel concatenation of multiple atrous convolution blocks to display the expanded perceptual field explicitly. In addition, MultiHead Attention-DwConv-Transformer (MDTransformer) module is utilized to evidently distinguish the target region from the background region. Extensive experiments on medical image segmentation from Glas, SIIM-ACR, ISIC and LGG demonstrated that our proposed network outperforms existing advanced methods in terms of both objective evaluation and subjective visual performance.

Tile, Slice, and Deblocking Filter Parallelization Method in HEVC (HEVC 복호기에서의 타일, 슬라이스, 디블록킹 필터 병렬화 방법)

  • Son, Sohee;Baek, Aram;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.484-495
    • /
    • 2017
  • The development of display devices and the increase of network transmission bandwidth bring demands for over 2K high resolution video such as panorama video, 4K ultra-high definition commercial broadcasting, and ultra-wide viewing video. To compress these image sequences with significant amount of data, High Efficiency Video Coding (HEVC) standard with the highest coding efficiency is a promising solution. HEVC, the latest video coding standard, provides high encoding efficiency using various advanced encoding tools, but it also requires significant amounts of computation complexity compared to previous coding standards. In particular, the complexity of HEVC decoding process is a imposing challenges on real-time playback of ultra-high resolution video. To accelerate the HEVC decoding process for ultra high resolution video, this paper introduces a data-level parallel video decoding method using slice and/or tile supported by HEVC. Moreover, deblocking filter process is further parallelized. The proposed method distributes independent decoding operations of each tile and/or each slice to multiple threads as well as deblocking filter operations. The experimental results show that the proposed method facilitates executions up to 2.0 times faster than the HEVC reference software for 4K videos.

Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba

  • Alafag Joanna It-itan;Moon Eun-Kyung;Hong Yeon-Chul;Chung Dong-Il;Kong Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.4 s.140
    • /
    • pp.331-341
    • /
    • 2006
  • Actin binding proteins play key roles in cell structure and movement particularly as regulators of the assembly, stability and localization of actin filaments in the cytoplasm. In the present study, a cDNA clone encoding an actin bundling protein named as AhABP was isolated from Acanthamoeba healyi, a causative agent of granulomatous amebic encephalitis. This clone exhibited high similarity with genes of Physarum polycephalum and Dictyostelium discoideum, which encode actin bundling proteins. Domain search analysis revealed the presence of essential conserved regions, i.e., an active actin binding site and 2 putative calcium binding EF-hands. Transfected amoeba cells demonstrated that AhABP is primarily localized in phagocytic cups, peripheral edges, pseudopods, and in cortical cytoplasm where actins are most abundant. Moreover, AhABP after the deletion of essential regions formed ellipsoidal inclusions within transfected cells. High-speed co-sedimentation assays revealed that AhABP directly interacted with actin in the presence of up to $10{\mu}M$ of calcium. Under the electron microscope, thick parallel bundles were formed by full length AhABP, in contrast to the thin actin bundles formed by constructs with deletion sites. In the light of these results, we conclude that AhABP is a novel actin bundling protein that is importantly associated with actin filaments in the cytoplasm.

Reconfigurable Architecture Design for H.264 Motion Estimation and 3D Graphics Rendering of Mobile Applications (이동통신 단말기를 위한 재구성 가능한 구조의 H.264 인코더의 움직임 추정기와 3차원 그래픽 렌더링 가속기 설계)

  • Park, Jung-Ae;Yoon, Mi-Sun;Shin, Hyun-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • Mobile communication devices such as PDAs, cellular phones, etc., need to perform several kinds of computation-intensive functions including H.264 encoding/decoding and 3D graphics processing. In this paper, new reconfigurable architecture is described, which can perform either motion estimation for H.264 or rendering for 3D graphics. The proposed motion estimation techniques use new efficient SAD computation ordering, DAU, and FDVS algorithms. The new approach can reduce the computation by 70% on the average than that of JM 8.2, without affecting the quality. In 3D rendering, midline traversal algorithm is used for parallel processing to increase throughput. Memories are partitioned into 8 blocks so that 2.4Mbits (47%) of memory is shared and selective power shutdown is possible during motion estimation and 3D graphics rendering. Processing elements are also shared to further reduce the chip area by 7%.

Design and Implementation of Internet Broadcasting System based on P2P Architecture (P2P 구조에 기반한 인터넷 방송 시스템 설계 및 구현)

  • Woo, Moon-Sup;Kim, Nam-Yun;Hwang, Ki-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.758-766
    • /
    • 2007
  • IStreaming services with a client-server architecture have scalability problem because a server cannot accomodate clients more than its processing capability. This paper introduces a case study for implementing H.264 streaming system based on P2P architecture in order to provide scalable and stable broadcast streaming services over the internet. The prototype system called OmniCast264 consists of the H.264 encoding server, the streaming server, the proxy server, and peer nodes. The proxy server dynamically manages placement of the peer nodes on the P2P network. Omnicast264 has the concepts of distributed streaming loads, real-time playback, error-robustness and modularity. Thus, it can provide large-scale broadcast streaming services. Finally, we have built P2P streaming systems with 12 PCs connected serially or in parallel. The experiment shows that OmniCast264 can provide real-time playback.

A Efficient Architecture of MBA-based Parallel MAC for High-Speed Digital Signal Processing (고속 디지털 신호처리를 위한 MBA기반 병렬 MAC의 효율적인 구조)

  • 서영호;김동욱
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.53-61
    • /
    • 2004
  • In this paper, we proposed a new architecture of MAC(Multiplier-Accumulator) to operate high-speed multiplication-accumulation. We used the MBA(Modified radix-4 Booth Algorithm) which is based on the 1's complement number system, and CSA(Carry Save Adder) for addition of the partial products. During the addition of the partial product, the signed numbers with the 1's complement type after Booth encoding are converted in the 2's complement signed number in the CSA tree. Since 2-bit CLA(Carry Look-ahead Adder) was used in adding the lower bits of the partial product, the input bit width of the final adder and whole delay of the critical path were reduced. The proposed MAC was applied into the DWT(Discrete Wavelet Transform) filtering operation for JPEG2000, and it showed the possibility for the practical application. Finally we identified the improved performance according to the comparison with the previous architecture in the aspect of hardware resource and delay.

Implementation of 1.5Gbps Serial ATA (1.5Gbps 직렬 에이티에이 전송 칩 구현)

  • 박상봉;허정화;신영호;홍성혁;박노경
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.63-70
    • /
    • 2004
  • This paper describes the link layer and physical layer of the Serial ATA which is the next generation for parallel ATA specification that defines data transfer between PC and peripheral storage devices. The link layer consists of CRC generation/error detection, 8b/10b decoding/encoding, primitive generation/detection block. For the physical layer, it includes CDR(Cock Data Recovery), transmission PLL, serializer/de-serializer. It also includes generation and receipt of OOB(Out-Of-Band) signal, impedance calibration, squelch circuit and comma detection/generation. Additionally, this chip includes TCB(Test Control Block) and BIST(Built-In Selt Test) block to ease debugging and verification. It is fabricated with 0.18${\mu}{\textrm}{m}$ standard CMOS cell library. All the function of the link layer operate properly. For the physical layer, all the blocks operate properly but the data transfer is limited to the 1.28Gbps. This is doe to the affection or parasitic elements and is verified with SPICE simulation.

Role of OrfQ in Formation of Light-Harvesting Complex of Rhodobacter sphaeroides under Light-Limiting Photoheterotrophic Conditions

  • LIM, SOO-KYONG;IL HAN LEE;KUN-SOO KIM;JEONG KUG LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.604-612
    • /
    • 1999
  • A puc-deleted cell of Rhodobacter sphaeroides grows with a doubling time longer than 160 h under light-limiting photoheterotrophic (3 Watts [W]/㎡) conditions due to an absence of the peripheral light-harvesting B800-850 complex. A spontaneous fast-growing mutant, R. sphaeroides SK101, was isolated from the puc-deleted cells cultured photoheterotrophically at 3 W/㎡. This mutant grew with an approximately 40-h doubling time. The growth of the mutant, however, was indistinguishable from its parental strain during photoheterotrophic growth at 10 W/㎡ as well as during aerobic growth. The membrane of SK101 grown aerobically did not reveal the presence of any spectral complex, while the amounts of the B875 complex and photosynthetic pigments of SK101 grown anaerobiclly in the dark with dimethylsulfoxide (DMSO) were the same as those of the parental cell. These results indicate that the oxygen control of the photosynthetic complex formation remained unaltered in the mutant. The B875 complex of SK101 under light-limiting conditions was elevated by 20% to 30% compared with that of the parental cell, which reflected the parallel increase of the bacteriochlorophyll and carotenoid contents of the mutant. When the puc was restored in SK101, the B875 complex level remained unchanged, but that of the B800-850 complex increased. The mutated phenotype of SK101 was complemented with orfQ encoding a putative bacteriochlorophyll-mobilizing protein. Accordingly, it is proposed that the mutated OrfQ of SK101 should have an altered affinity towards the assembly factor specific to the most peripheral light-harvesting complex, which could be either the B875 or the B800-850 complex.

  • PDF