• Title/Summary/Keyword: Parallel Encoding

Search Result 101, Processing Time 0.025 seconds

A Walsh-Based Distributed Associative Memory with Genetic Algorithm Maximization of Storage Capacity for Face Recognition

  • Kim, Kyung-A;Oh, Se-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.640-643
    • /
    • 2003
  • A Walsh function based associative memory is capable of storing m patterns in a single pattern storage space with Walsh encoding of each pattern. Furthermore, each stored pattern can be matched against the stored patterns extremely fast using algorithmic parallel processing. As such, this special type of memory is ideal for real-time processing of large scale information. However this incredible efficiency generates large amount of crosstalk between stored patterns that incurs mis-recognition. This crosstalk is a function of the set of different sequencies [number of zero crossings] of the Walsh function associated with each pattern to be stored. This sequency set is thus optimized in this paper to minimize mis-recognition, as well as to maximize memory saying. In this paper, this Walsh memory has been applied to the problem of face recognition, where PCA is applied to dimensionality reduction. The maximum Walsh spectral component and genetic algorithm (GA) are applied to determine the optimal Walsh function set to be associated with the data to be stored. The experimental results indicate that the proposed methods provide a novel and robust technology to achieve an error-free, real-time, and memory-saving recognition of large scale patterns.

  • PDF

In Vivo Expression Technology (IVET) and Its Application in Plant-Associated Bacteria

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • In vivo expression technology (IVET) has been developed to study bacterial gene expression in Salmonella typhimurium during host infection. The expression of selected genes by IVET has been elevated in vivo but not in vitro. The selected genes turned out to be important for bacterial virulence and/or pathogenicity. IVET depends on a synthetic operon with a promoterless transcriptional fusion between a selection marker gene and a reporter gene. The IVET approach has been successfully adapted in other bacterial pathogens and plant-associated bacteria using different selection markers. Pseudomonas putida suppresses citrus root rot caused by Phytophthora parasitica and enhances citrus seedling growth. The WET strategy was adapted based on a transcriptional fusion, pyrBC'-lacZ, in P. putida to study the bacterial traits important far biocontrol activities. Several genes appeared to be induced on P. parasitica hyphae and were found to be related with metabolism and regulation of gene expression. It is likely that the biocontrol strain took a metabolic advantage from the plant pathogenic fungus and then suppressed citrus root rot effectively. The result was parallel with those from the adaptation of IVET in P. fluorescens, a plant growth promoting rhizobacteria (PGPR). Interestingly, genes encoding components for type III secretion system have been identified as rhizosphere-induced genes in the PGPR strain. The type III secretion system may play a certain role during interaction with its counterpart plants. Application of IVET has been demonstrated in a wide range of bacteria. It is an important strategy to genetically understand complicated bacterial traits in the environment.

Iterative Decoding far a Satellite Broadcasting Channel (위성 통신에서의 반복 복호 기법)

  • Lee, Jae-Sun;Park, Jae-Sun;Lee, Byoung-Moo;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.309-313
    • /
    • 2009
  • In this paper, the network performance of a turbo coded optical code division multiple access (CDMA) system with cross-layer, which is between physical and network layers, concept is analyzed and simulated. We consider physical and MAC layers in a cross-layer concept. An intensity-modulated/direct-detection (IM/DD) optical system employing pulse position modulation (PPM) for satellite broadcasting communications is considered. In order to increase the system performance, turbo codes composed of parallel concatenated convolutional codes (PCCCs) is utilized. The network performance is evaluated in terms of bit error probability (BEP). From the simulation results, it is demonstrated that turbo coding offers considerable coding gain with reasonable encoding and decoding complexity. Also, it is confirmed that the performance of such an optical CDMA network can be substantially improved by increasing the interleaver length and the number of iterations in the decoding process. The results of this paper can be applied to implement the satellite broadcasting communications.

  • PDF

Delay-Throughput Analysis Based on Cross-Layer Concept for Optical CDMA Systems (Cross-layer 개념을 바탕으로 한 광 CDMA 시스템을 위한 Delay-Throughput 분석)

  • Kim, Yoon-Hyun;Kim, Seung-Jong;O, Yeong-Cheol;Lee, Seong-Chun;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.314-319
    • /
    • 2009
  • In this paper, the network performance of a turbo coded optical code division multiple access (COMA) system with cross-layer, which is between physical and network layers, concept is analyzed and simulated We consider physical and MAC layers in a cross-layer concept. An intensity-modulated/direct-detection (IM/DD) optical system employing pulse position modulation (PPM) is considered In order to increase the system performance, turbo codes composed of parallel concatenated convolutional codes (PCCCs) is utilized. The network performance is evaluated in terms of bit error probability (BEP). From the simulation results, it is demonstrated that turbo coding offers considerable coding gain with reasonable encoding and decoding complexity. Also, it is confirmed that the performance of such an optical COMA network can be substantially improved by increasing the interleaver length and the number of iterations in the decoding process. The results of this paper can be applied to implement the indoor optical wireless LANs.

  • PDF

Fixed-complexity Sphere Encoder for Multi-user MIMO Systems (다중 사용자 MIMO 시스템을 위한 고정 복잡도를 갖는 스피어 인코더)

  • Mohaisen, Manar;Han, Dong-Keol;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.632-638
    • /
    • 2010
  • In this paper, we propose a fixed-complexity sphere encoder (FSE) for multi-user MIMO (MU-MIMO) systems. The Proposed FSE accomplishes a scalable tradeoff between performance and complexity. Also, because it has a parallel tree-search structure, the proposed encoder can be easily pipelined, leading to a tremendous reduction in the precoding latency. The complexity of the proposed encoder is also analyzed, and we propose two techniques that reduce it. Simulation and analytical results demonstrate that in a $4\times4$ MU-MIMO system, the complexity of the proposed FSE is 16% that of the conventional QRD-M encoder (QRDM-E). Also, the encoding throughput of the proposed endoder is 7.5 times that of the QRDM-E with tolerable degradation in the BER performance, while achieving the optimum diversity order.

Implementation of the modified-signed digit(MSD) number adder using triple rail-coding input and symbolic substitution (Triple rail-coding 입력과 기호치환을 이용한 변형부호화자리수 가산기 구현)

  • Shin, Chang-Mok;Kim, Soo-Joong;Seo, Dong-Hoan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.43-51
    • /
    • 2004
  • An optical parallel modified signed-digit(MSD) number adder system is proposed by using triple rail-coding input patterns and serial arrangement method of symbolic substitution. By combing overlapped arithmetic results. which are produced by encoding MSD input as triple rail-coding patterns. into the same patterns, symbolic substitution rules are reduced and also by using serialized and space-shifted input patterns in optical experiments, the optical adder without space-shifting operation, NOR operation and threshold operation is implemented.

Cloning and Expression of Cyclodextrin Glycosyltransferase Gene from Paenibacillus sp. T16 Isolated from Hot Spring Soil in Northern Thailand

  • Charoensakdi, Ratiya;Murakami, Shuichiro;Aoki, Kenji;Rimphanitchayakit, Vichien;Limpaseni, Tipaporn
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.333-340
    • /
    • 2007
  • Gene encoding cyclodextrin glycosyltransferase (CGTase), from thermotolerant Paenibacillus sp. T16 isolated from hot spring area in northern Thailand, was cloned and expressed in E. coli (JM109). The nucleotide sequences of both wild type and transformed CGTases consisted of 2139 bp open reading frame, 713 deduced amino acids residues with difference of 4 amino acid residues. The recombinant cells required 24 h culture time and a neutral pH for culture medium to produce compatible amount of CGTase compared to 72 h culture time and pH 10 for wild type. The recombinant and wild-type CGTases were purified by starch adsorption and phenyl sepharose column chromatography and characterized in parallel. Both enzymes showed molecular weight of 77 kDa and similar optimum pHs and temperatures with recombinant enzyme showing broader range. There were some significant difference in pH, temperature stability and kinetic parameters. The presence of high starch concentration resulted in higher thermostability in recombinant enzyme than the wild type. The recombinant enzyme was more stable at higher temperature and lower pH, with lower $K_m$ for coupling reaction using cellobiose and cyclodextrins as substrates.

A Genetic-Based Optimization Model for Clustered Node Allocation System in a Distributed Environment (분산 환경에서 클러스터 노드 할당 시스템을 위한 유전자 기반 최적화 모델)

  • Park, Kyeong-mo
    • The KIPS Transactions:PartA
    • /
    • v.10A no.1
    • /
    • pp.15-24
    • /
    • 2003
  • In this paper, an optimization model for the clustered node allocation systems in the distributed computing environment is presented. In the presented model with a distributed file system framework, the dynamics of system behavior over times is carefully thought over the nodes and hence the functionality of the cluster monitor node to check the feasibility of the current set of clustered node allocation is given. The cluster monitor node of the node allocation system capable of distributing the parallel modules to clustered nodes provides a good allocation solution using Genetic Algorithms (GA). As a part of the experimental studies, the solution quality and computation time effects of varying GA experimental parameters, such as the encoding scheme, the genetic operators (crossover, mutations), the population size, and the number of node modules, and the comparative findings are presented.

Design of High Speed LDPC Encoder Based on DVB-S2 Standard (DVB-S2 기반 고속 LDPC 부호기 설계)

  • Park, Gun Yeol;Lee, Seong Ro;Jeon, Sung Min;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.196-201
    • /
    • 2013
  • In this paper, we proposed high speed LDPC encoder architecture for DVB-S2 standard. In conventional algorithm, the processes of parity calculations are serial fashion. Therefore conventional algorithm need clocks of number of parity. The proposed LDPC encoding architecture is based on a parallel 360 bits-wise operations. The key issues for realizing high speed are using the two kinds of index addresses and make use of memories efficiently. We implemented a half rate LDPC encoder on an FPGA, and confirmed its maximum throughput is up to 10 Gbps on 100MHz clock.

Relative Effect of Glyphosate on Glyphosate-Tolerant Maize Rhizobacterial Communities is Not Altered by Soil Properties

  • Barriuso, Jorge;Mellado, Rafael P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.159-165
    • /
    • 2012
  • The rhizobacterial composition varies according to the soil properties. To test if the effect of herbicides on the rhizobacterial communities of genetically modified NK603 glyphosate-tolerant maize varies according to different soil locations, a comparison was made between the effects of glyphosate (Roundup Plus), a post-emergence applied herbicide, and a pre-emergence applied herbicide (GTZ) versus untreated soil. The potential effect was monitored by direct amplification, cloning, and sequencing of the soil DNA encoding 16S rRNA, and high-throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region. The results obtained using three different methods to analyze the herbicide effect on the rhizobacterial communities of genetically modified NK603 maize were comparable to those previously obtained when glyphosate-tolerant maize was grown in soil with different characteristics. Both herbicides decreased the bacterial diversity in the rhizosphere, with Actinobacteria being the taxonomic group most affected. The results suggest that both herbicides affected the structure of the maize rhizobacterial community, but glyphosate was environmentally less aggressive.