• Title/Summary/Keyword: Parallel Computing(병렬컴퓨팅)

Search Result 229, Processing Time 0.023 seconds

The Effect of Mesh Reordering on Laplacian Smoothing for Nonuniform Memory Access Architecture-based High Performance Computing Systems (NUMA구조를 가진 고성능 컴퓨팅 시스템에서의 메쉬 재배열의 라플라시안 스무딩에 대한 효과)

  • Kim, Jbium
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.82-88
    • /
    • 2014
  • We study the effect of mesh reordering on Laplacian smoothing for parallel high performance computing systems. Specifically, we use the Reverse-Cuthill McKee algorithm to reorder meshes and use Laplacian Smoothing to improve the mesh quality on Nonuniform memory access architecture-based parallel high performance computing systems. First, we investigate the effect of using mesh reordering on Laplacian smoothing for a single core system and extend the idea to NUMA-based high performance computing systems.

Implementation of Efficient Power Method on CUDA GPU (CUDA 기반 GPU에서 효율적인 Power Method의 구현)

  • Kim, Jung-Hwan;Kim, Jin-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.9-16
    • /
    • 2011
  • GPU computing is emerging in high performance application area since it can easily exploit massive parallelism in a way of cost-effective computing. The power method which finds the eigen vector of a given matrix is widely used in various applications such as PageRank for calculating importance of web pages. In this research we made the power method efficiently parallelized on GPU and also suggested how it can be improved to enhance its performance. The power method mainly consists of matrix-vector product and it can be easily parallelized. However, it should decide the convergence of the eigen vector and need scaling of the vector subsequently. Such operations incur several calls to GPU kernels and data movement between host and GPU memories. We improved the performance of the power method by means of reduced calls to GPU kernels, optimized thread allocation and enhanced decision operation for the convergence.

Running Large-scale Mobile Software using PDA Cluster Computing (PDA 클러스터 컴퓨팅을 활용한 대용량 모바일 소프트웨어 실행)

  • Min, Hye-Rhyn;Lee, Jong-Woo
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.249-258
    • /
    • 2009
  • As wireless internet markets become larger than before, many mobile applications are also being developed actively. In this circumstances mobile devices such as cell phones, PDAs are playing an important role to satisfy the user's need of ubiquitous computing. Due to the hardware limitations, however, the mobile devices like PDA can not run large-scale softwares by itself. The main goal of this paper is to make large-scale applications runnable on PDA. To accomplish this, we used the PDA-JPVM cluster computing engine which has been already developed by us. We found out by running the applications and the performance evaluation that large-scale Java softwares can easily run on the hardware-limited PDA. And the performance evaluation results are also presented.

  • PDF

Performance Analysis of Cluster Network Interfaces for Parallel Computing of Computational Fluid Dynamics (전산유체역학 병렬해석을 위한 클러스터 네트웍 장치 성능분석)

  • Lee, Bo Seong;Hong, Jeong U;Lee, Dong Ho;Lee, Sang San
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.37-43
    • /
    • 2003
  • Parallel computing method is widely used in the computational fluid dynamics for efficient numerical analysis. Nowadays, low cost Linux cluster computers substitute for traditional supercomputers with parallel computing shcemes. The performance of nemerical solvers on an Linux cluster computer is highly dependent not on the performance of processors but on the performance of network devices in the cluster system. In this paper, we investigated the effects of the network devices such as Myrinet2000, gigabit ethernet, and fast ethernet on the performance of the cluster system by using some benchmark programs such as Netpipe, LINPACK, NAS NPB, and MPINS2D Navier-Stokes solvers. Finally, upon this investigation, we will suggest the method for building high performance low cost Linux cluster system in the computational fluid dynamics analysis.

A Performance Evaluation of Parallel Color Conversion based on the Thread Number on Multi-core Systems (멀티코어 시스템에서 쓰레드 수에 따른 병렬 색변환 성능 검증)

  • Kim, Cheong Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.73-76
    • /
    • 2014
  • With the increasing popularity of multi-core processors, they have been adopted even in embedded systems. Under this circumstance many multimedia applications can be parallelized on multi-core platforms because they usually require heavy computations and extensive memory accesses. This paper proposes an efficient thread-level parallel implementation for color space conversion on multi-core CPU. Thread-level parallelism has been becoming very useful parallel processing paradigm especially on shared memory computing systems. In this work, it is exploited by allocating different input pixels to each thread for concurrent loop executions. For the performance evaluation, this paper evaluate the performace improvements for color conversion on multi-core processors based on the processing speed comparison between its serial implementation and parallel ones. The results shows that thread-level parallel implementations show the overall similar ratios of performance improvements regardless of different multi-cores.

Analysis of Turbomachinery Internal Flow Using Parallel Computing (병렬컴퓨팅을 이용한 터보기계 내부 유동장 해석)

  • Yee, Jang-Jun;Kim, Yu-Shin;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.586-592
    • /
    • 2000
  • 터보머신 태부에 존재하는 정익 - 동익의 상호작용 유동현상을 수치모사 하는 코드를 병렬화 하였다 정익 - 동익의 상호작용을 해석하는 데에 편리하도륵 Multi-Block Grid System을 도입하여 계산영역을 형성하였고, 동익의 움직임으로 인해 발생하는 Sliding Interface부분은 Patched 알고리즘을 적용하여 해석하였다. 정익과 동익의 수를 1대 1로 단순화시켜 수치모사한 결과와 정익과 동익의 수를 실제 조건과 더 비슷하게 설정한 3대 4의 비율로 맞추어 수치모사한 결과를 비교하였다. 또한, 병렬컴퓨팅으로 인해 단축된 계산시간을 다른 연구에서의 계산시간들과 서로 비교하였다. 2차원 비정상 압축성 Navier-Stokes 방정식이 이용되었고, 난류모델링에는 K-w SST 모델링이 적응되었다. Roe의 FDS 기법을 사용하여 플럭스를 계산하였고, MUSCL 기법을 적용하여 3차의 공간정확도를 갖도록 하였다. 시간적분에는 이보성의 DP-SGS를 사용하였다. 해석결과의 분석에는 Time-averaged pressure distribution과 Pressure amplitude distribution 데이터를 사용했다.

  • PDF

Parallel Implementations of the Self-Organizing Network for Normal Mixtures (병렬처리를 통한 정규혼합분포의 추정)

  • Lee, Chul-Hee;Ahn, Sung-Mahn
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.459-469
    • /
    • 2012
  • This article proposes a couple of parallel implementations of the self-organizing network for normal mixtures. In principle, self-organizing networks should be able to be implemented in a parallel computing environment without issue. However, the network for normal mixtures has inherent problem in being operated parallel in pure sense due to estimating conditional expectations of the mixing proportion in each iteration. This article shows the result of the parallel implementations of the network using Java. According to the results, both of the implementations achieved a faster execution without any performance degradation.

High Resolution Rainfall Prediction Using Distributed Computing Technology (분산 컴퓨팅 기술을 이용한 고해상도 강수량 예측)

  • Yoon, JunWeon;Song, Ui-Sung
    • Journal of Digital Contents Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • Distributed Computing attempts to harness a massive computing power using a great numbers of idle PCs resource distributed linked to the internet and processes a variety of applications parallel way such as bio, climate, cryptology, and astronomy. In this paper, we develop internet-distributed computing environment, so that we can analyze High Resolution Rainfall Prediction application in meteorological field. For analyze the rainfall forecast in Korea peninsula, we used QPM(Quantitative Precipitation Model) that is a mesoscale forecasting model. It needs to a lot of time to construct model which consisted of 27KM grid spacing, also the efficiency is degraded. On the other hand, based on this model it is easy to understand the distribution of rainfall calculated in accordance with the detailed topography of the area represented by a small terrain model reflecting the effects 3km radius of detail and terrain can improve the computational efficiency. The model is broken down into detailed area greater the required parallelism and increases the number of compute nodes that efficiency is increased linearly.. This model is distributed divided in two sub-grid distributed units of work to be done in the domain of $20{\times}20$ is networked computing resources.

A Basic Study of Thermal-Fluid Flow Analysis Using Grid Computing (그리드 컴퓨팅을 이용한 열유동 해석 기법에 관한 기초 연구)

  • Hong, Seung-Do;Ha, Yeong-Man;Cho, Kum-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.604-611
    • /
    • 2004
  • Simulation of three-dimensional turbulent flow with LES and DNS lakes much time and expense with currently available computing resources and requires big computing resources especially for high Reynolds number. The emerging alternative to provide the required computing power and working environment is the Grid computing technology. We developed the CFD code which carries out the parallel computing under the Grid environment. We constructed the Grid environment by connecting different PC-cluster systems located at two different institutes of Pusan National University in Busan and KISTI in Daejeon. The specification of PC-cluster located at two different institutes is not uniform. We run our parallelized computer code under the Grid environment and compared its performance with that obtained using the homogeneous computing environment. When we run our code under the Grid environment, the communication time between different computer nodes takes much larger time than the real computation time. Thus the Grid computing requires the highly fast network speed.

Analysis of massive data in astronomy (천문학에서의 대용량 자료 분석)

  • Shin, Min-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1107-1116
    • /
    • 2016
  • Recent astronomical survey observations have produced substantial amounts of data as well as completely changed conventional methods of analyzing astronomical data. Both classical statistical inference and modern machine learning methods have been used in every step of data analysis that range from data calibration to inferences of physical models. We are seeing the growing popularity of using machine learning methods in classical problems of astronomical data analysis due to low-cost data acquisition using cheap large-scale detectors and fast computer networks that enable us to share large volumes of data. It is common to consider the effects of inhomogeneous spatial and temporal coverage in the analysis of big astronomical data. The growing size of the data requires us to use parallel distributed computing environments as well as machine learning algorithms. Distributed data analysis systems have not been adopted widely for the general analysis of massive astronomical data. Gathering adequate training data is expensive in observation and learning data are generally collected from multiple data sources in astronomy; therefore, semi-supervised and ensemble machine learning methods will become important for the analysis of big astronomical data.