• Title/Summary/Keyword: Parallax image

Search Result 127, Processing Time 0.026 seconds

Development of Mobile-type Full Parallax 3D Display using High-Density Directional Images

  • Tsuboi, Masashi;Takaki, Yasuhiro;Horikoshi, Tsutomu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1729-1732
    • /
    • 2007
  • We introduce a mobile-type 3D display that achieves a full directional motion parallax and the real time interactions between the observer and the 3D image at the same time. These effects can be unique specified to the mobile-type 3D display.

  • PDF

Depth Map Estimation Model Using 3D Feature Volume (3차원 특징볼륨을 이용한 깊이영상 생성 모델)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.447-454
    • /
    • 2018
  • This paper proposes a depth image generation algorithm of stereo images using a deep learning model composed of a CNN (convolutional neural network). The proposed algorithm consists of a feature extraction unit which extracts the main features of each parallax image and a depth learning unit which learns the parallax information using extracted features. First, the feature extraction unit extracts a feature map for each parallax image through the Xception module and the ASPP(Atrous spatial pyramid pooling) module, which are composed of 2D CNN layers. Then, the feature map for each parallax is accumulated in 3D form according to the time difference and the depth image is estimated after passing through the depth learning unit for learning the depth estimation weight through 3D CNN. The proposed algorithm estimates the depth of object region more accurately than other algorithms.

Analysis on the effect of color dispersion compensating layer in the three-dimensional/two-dimensional convertible display based on parallax barrier

  • Cho, Seong-Woo;Park, Jae-Hyeung;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1599-1602
    • /
    • 2005
  • In a three-dimensional/two-dimensional convertible parallax barrier display, an additional layer compensating the color dispersion for three-dimensional display can distort displayed image in the two-dimensional mode. We analyze the effect of the color dispersion compensating layer on two-dimensional image by computer simulations.

  • PDF

Real-Time Stereoscopic Image Conversion Using Motion Detection and Region Segmentation (움직임 검출과 영역 분할을 이용한 실시간 입체 영상 변환)

  • Kwon Byong-Heon;Seo Burm-suk
    • Journal of Digital Contents Society
    • /
    • v.6 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • In this paper we propose real-time cocersion methods that can convert into stereoscopic image using depth map that is formed by motion detection extracted from 2-D moving image and region segmentation separated from image. Depth map which represents depth information of image and the proposed absolute parallax image are used as the measure of qualitative evaluation. We have compared depth information, parallax processing, and segmentation between objects with different depth for proposed and conventional method. As a result, we have confirmed the proposed method can offer realistic stereoscopic effect regardless of direction and velocity of moving object for a moving image.

  • PDF

Optical System Design and Evaluation for an Augmented Reality Head-up Display Using Aberration and Parallax Analysis

  • Kim, Kum-Ho;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.660-671
    • /
    • 2021
  • We present a novel optical system for an augmented reality head-up display (AR HUD) with two virtual images at different conjugates by employing a confocal off-axis two-mirror and introducing the horopter circle. For a far virtual image with large asymmetrical aberrations, we initially obtain an off-axis two-mirror system corrected for these aberrations and compensated for the down angle by configuring its parameters to satisfy the confocal and Scheimpflug conditions, respectively. In addition, this system is designed to reduce the biocular parallax by matching Petzval surface into the longitudinal horopter circle in a near virtual image. This design approach enables us to easily balance the residual aberrations and biocular parallax when configuring the optical system with two different conjugates, which results in an AR HUD available for near and far virtual images together.

Super-multiview windshield display for driving assistance

  • Urano, Yohei;Kashiwada, Shinji;Ando, Hiroshi;Nakamura, Koji;Takaki, Yasuhiro
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.43-46
    • /
    • 2011
  • A three-dimensional windshield display (3D-WSD) can present driving information at the same depth as the objects in the outside scene. Herein, a super-multiview 3D-WSD is proposed because the super-multiview display technique provides smooth motion parallax. Motion parallax is the only physiological cue for perceiving the depth of a 3D image displayed at a far distance, which cannot be perceived by vergence and binocular parallax. A prototype system with 36 views was constructed, and the discontinuity of motion parallax and accuracy of depth perception were evaluated.

Development of Image-space Telecentric Lens for Intra-Oral 3D Scanner

  • Kim, Tae Young;Shin, Min-Ho;Chang, Ryungkee;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • An image-space telecentric lens for an intra-oral 3D scanner was designed and fabricated for dental application. Since a telecentric function can provide the same results regardless of image plane position, it helps to realize a more accurate image for an intra-oral scanner. The performance of the designed lens meets the required properties for HD resolution. In particular, lateral color is corrected within 1 pixel. This system achieves depth of focus of more than 3 mm. For user convenience, the developed system consists of a prism part and an imaging part. Both parts are optimized to reduce the front size and weight of the system. In order to make the parallax sights, parallax angle was determined to be 8 degrees between two optical systems.

Parallax Map Preprocessing Algorithm for Performance Improvement of Hole-Filling (홀 채우기의 성능 개선을 위한 시차지도의 전처리 알고리즘)

  • Kim, Jun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.62-70
    • /
    • 2013
  • DIBR(Depth Image Based Rendering) is a kind of view synthesis algorithm to generate images at free view points from the reference color image and its depth map. One of the main challenges of DIBR is the occurrence of holes that correspond to uncovered backgrounds at the synthesized view. In order to cover holes efficiently, two main approaches have been actively investigated. One is to develop preprocessing algorithms for depth maps or parallax maps to reduce the size of possible holes, and the other is to develop hole filling methods to fill the generated holes using adjacent pixels in non-hole areas. Most conventional preprocessing algorithms for reducing the size of holes are based on the smoothing process of depth map. Filtering of depth map, however, attenuates the resolution of depth map and generates geometric distortions. In this paper, we proposes a novel preprocessing algorithm for parallax map to improve the performance of hole-filling by avoiding the drawbacks of conventional methods.

Hardware Implementation of FPGA-based Real-Time Formatter for 3D Display (3D 디스플레이를 위한 FPGA-기반 실시간 포맷변환기의 하드웨어 구현)

  • Seo Young-Ho;Kim Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1031-1038
    • /
    • 2005
  • In this paper, we propose real-time 3D image converting architecture by a unit of pixel for 2D/3D compatible PC and LCD of cellular phone with parallax burier, and implement a system for overall display operation after designing a circuit based on FPGA. After digitizing anolog image signal from PC, we recompose it to 3D image signal according to input image type. Since the architecture which rearranges 2D image to 3D depends on parallax burier, we use interleaving method which mixes pixels by a unit of R, G, and B cell. The propose architecture is designed into a circuit based on FPGA with high-speed memory access technique and use 4 SDRAMs for high performance data storing and processing. The implemented system consists of A/D converting system, FPGA system to formatting 2D signal to 3D, and LCD panel with parallax barrier, for 3D display.

3D Display in Mobile Applications

  • Nam, Hui;Kim, Beom-Shik;Park, Chan-Young;Gu, Ja-Seng;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1561-1564
    • /
    • 2006
  • SDI has been developing mobile 3D display for years. For mobile applications, we adapted parallax barrier method. We have developed auto stereoscopic swing 3D display in which people can 3D image in both portrait and landscape mode. Furthermore to increase 3D resolution, we have developed a high resolution 3D display using time division multiplexing parallax barrier method

  • PDF