• Title/Summary/Keyword: Paper chip

Search Result 3,326, Processing Time 0.031 seconds

Tmr-Tree : An Efficient Spatial Index Technique in Main Memory Databases (Tmr-트리 : 주기억 데이터베이스에서 효율적인 공간 색인 기법)

  • Yun Suk-Woo;Kim Kyung-Chang
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.543-552
    • /
    • 2005
  • As random access memory chip gets cheaper, it becomes affordable to realize main memory-based database systems. The disk-based spatial indexing techniques, however, cannot direct apply to main memory databases, because the main purpose of disk-based techniques is to reduce the number of disk accesses. In main memory-based indexing techniques, the node access time is much faster than that in disk-based indexing techniques, because all index nodes reside in a main memory. Unlike disk-based index techniques, main memory-based spatial indexing techniques must reduce key comparing time as well as node access time. In this paper, we propose an efficient spatial index structure for main memory-based databases, called Tmr-tree. Tmr-tree integrates the characteristics of R-tree and T-tree. Therefore, Nodes of Tmr-tree consist of several entries for data objects, main memory pointers to left and right child, and three additional fields. First is a MBR of a self node, which tightly encloses all data MBRs (Minimum Bounding Rectangles) in a current node, and second and third are MBRs of left and right sub-tree, respectively. Because Tmr-tree needs not to visit all leaf nodes, in terms of search time, proposed Tmr-tree outperforms R-tree in our experiments. As node size is increased, search time is drastically decreased followed by a gradual increase. However, in terms of insertion time, the performance of Tmr-tree was slightly lower than R-tree.

Compact Field Remapping for Dynamically Allocated Structures (동적으로 할당된 구조체를 위한 압축된 필드 재배치)

  • Kim, Jeong-Eun;Han, Hwan-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.1003-1012
    • /
    • 2005
  • The most significant difference of embedded systems from general purpose systems is that embedded systems are allowed to use only limited resources including battery and memory. Especially, the number of applications increases which deal with multimedia data. In those systems with high data computations, the delay of memory access is one of the major bottlenecks hurting the system performance. As a result, many researchers have investigated various techniques to reduce the memory access cost. Most programs generally have locality in memory references. Temporal locality of references means that a resource accessed at one point will be used again in the near future. Spatial locality of references is that likelihood of using a resource gets higher if resources near it were just accessed. The latest embedded processors usually adapt cache memory to exploit these two types of localities. Processors access faster cache memory than off-chip memory, reducing the latency. In this paper we will propose the enhanced dynamic allocation technique for structure-type data in order to eliminate unused memory space and to reduce both the cache miss rate and the application execution time. The proposed approach aggregates fields from multiple records dynamically allocated and consecutively remaps them on the memory space. Experiments on Olden benchmarks show $13.9\%$ L1 cache miss rate drop and $15.9\%$ L2 cache miss drop on average, compared to the previously proposed techniques. We also find execution time reduced by $10.9\%$ on average, compared to the previous work.

A Fully Integrated Low-IF Receiver using Poly Phase Filter for VHF Applications (다중위상필터(Poly Phase Filter)를 이용한 VHF용 Low-IF 수신기 설계)

  • Kim, Seong-Do;Park, Dong-Woon;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.482-489
    • /
    • 2010
  • In this paper we have proposed a new architecture of DQ-IRM(Double-Quadrature Image Rejection Mixer) for image rejection in the low-IF receiver. It consist of a frequency-tunable RF PPF(Poly Phase Filter) and the quadrature mixers. The conventional DQ-IRM generates the quadrature RF signals for the RF wide band at once. But the proposed DQ-IRM with the frequency-tuable RF PPF generates the quadrature RF signals for the narrow band of 2~3 channels bandwidth, which is partitioned from the RF wide band. We designed the CMOS RF tuner for T-DMB(Terrestrial Digital Multimedia Broadcasting) with the proposed 3rd DQ-IRM using a 0.18um CMOS technology and verified the performances of the designed receiver such as the image rejection ratio, the noise figure and the power consumption. The overall NF of the RF tuner is about 1.26 dB and the image reject ratio is about 51 dB. The power consumption is 55.8 mW at 1.8 V supply voltage. The chip area is $3.0{\times}2.5mm^2$.

Implementation of the AMBA AXI4 Bus interface for effective data transaction and optimized hardware design (효율적인 데이터 전송과 하드웨어 최적화를 위한 AMBA AXI4 BUS Interface 구현)

  • Kim, Hyeon-Wook;Kim, Geun-Jun;Jo, Gi-Ppeum;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.70-75
    • /
    • 2014
  • Recently, the demand for high-integrated, low-powered, and high-powered SoC design has been increasing due to the multi-functionality and the miniaturization of digital devices and the high capacity of service informations. With the rapid evolution of the system, the required hardware performances have become diversified, the FPGA system has been increasingly adopted for the rapid verification, and SoC system using the FPGA and the ARM core for control has been growingly chosen. While the AXI bus is used in these kinds of systems in various ways, it is traditionally designed with AXI slave structure. In slave structure, there are problems with the CPU resources because CPU is continually involved in the data transfer and can't be used in other jobs, and with the decreased transmission efficiency because the time not used of AXI bus beomes longer. In this paper, an efficient AXI master interface is proposed to solve this problem. The simulation results show that the proposed system achieves reductions in the consumption clock by an average of 51.99% and in the slice by 31% and that the maximum operating frequency is increased to 107.84MHz by about 140%.

Bus Splitting Techniques for MPSoC to Reduce Bus Energy (MPSoC 플랫폼의 버스 에너지 절감을 위한 버스 분할 기법)

  • Chung Chun-Mok;Kim Jin-Hyo;Kim Ji-Hong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.699-708
    • /
    • 2006
  • Bus splitting technique reduces bus energy by placing modules with frequent communications closely and using necessary bus segments in communications. But, previous bus splitting techniques can not be used in MPSoC platform, because it uses cache coherency protocol and all processors should be able to see the bus transactions. In this paper, we propose a bus splitting technique for MPSoC platform to reduce bus energy. The proposed technique divides a bus into several bus segments, some for private memory and others for shared memory. So, it minimizes the bus energy consumed in private memory accesses without producing cache coherency problem. We also propose a task allocation technique considering cache coherency protocol. It allocates tasks into processors according to the numbers of bus transactions and cache coherence protocol, and reduces the bus energy consumption during shared memory references. The experimental results from simulations say the bus splitting technique reduces maximal 83% of the bus energy consumption by private memory accesses. Also they show the task allocation technique reduces maximal 30% of bus energy consumed in shared memory references. We can expect the bus splitting technique and the task allocation technique can be used in multiprocessor platforms to reduce bus energy without interference with cache coherency protocol.

Development of On-line Quality Sorting System for Dried Oak Mushroom - 3rd Prototype-

  • 김철수;김기동;조기현;이정택;김진현
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • In Korea, quality evaluation of dried oak mushrooms are done first by classifying them into more than 10 different categories based on the state of opening of the cap, surface pattern, and colors. And mushrooms of each category are further classified into 3 or 4 groups based on its shape and size, resulting into total 30 to 40 different grades. Quality evaluation and sorting based on the external visual features are usually done manually. Since visual features of mushroom affecting quality grades are distributed over the entire surface of the mushroom, both front (cap) and back (stem and gill) surfaces should be inspected thoroughly. In fact, it is almost impossible for human to inspect every mushroom, especially when they are fed continuously via conveyor. In this paper, considering real time on-line system implementation, image processing algorithms utilizing artificial neural network have been developed for the quality grading of a mushroom. The neural network based image processing utilized the raw gray value image of fed mushrooms captured by the camera without any complex image processing such as feature enhancement and extraction to identify the feeding state and to grade the quality of a mushroom. Developed algorithms were implemented to the prototype on-line grading and sorting system. The prototype was developed to simplify the system requirement and the overall mechanism. The system was composed of automatic devices for mushroom feeding and handling, a set of computer vision system with lighting chamber, one chip microprocessor based controller, and pneumatic actuators. The proposed grading scheme was tested using the prototype. Network training for the feeding state recognition and grading was done using static images. 200 samples (20 grade levels and 10 per each grade) were used for training. 300 samples (20 grade levels and 15 per each grade) were used to validate the trained network. By changing orientation of each sample, 600 data sets were made for the test and the trained network showed around 91 % of the grading accuracy. Though image processing itself required approximately less than 0.3 second depending on a mushroom, because of the actuating device and control response, average 0.6 to 0.7 second was required for grading and sorting of a mushroom resulting into the processing capability of 5,000/hr to 6,000/hr.

  • PDF

A Property-Based Data Sealing using the Weakest Precondition Concept (최소 전제조건 개념을 이용한 성질 기반 데이터 실링)

  • Park, Tae-Jin;Park, Jun-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.1-13
    • /
    • 2008
  • Trusted Computing is a hardware-based technology that aims to guarantee security for machines beyond their users' control by providing security on computing hardware and software. TPM(Trusted Platform Module), the trusted platform specified by the Trusted Computing Group, acts as the roots for the trusted data storage and the trusted reporting of platform configuration. Data sealing encrypts secret data with a key and the platform's configuration at the time of encryption. In contrast to the traditional data sealing based on binary hash values of the platform configuration, a new approach called property-based data sealing was recently suggested. In this paper, we propose and analyze a new property-based data sealing protocol using the weakest precondition concept by Dijkstra. The proposed protocol resolves the problem of system updates by allowing sealed data to be unsealed at any configuration providing the required property. It assumes practically implementable trusted third parties only and protects platform's privacy when communicating. We demonstrate the proposed protocol's operability with any TPM chip by implementing and running the protocol on a software TPM emulator by Strasser. The proposed scheme can be deployed in PDAs and smart phones over wireless mobile networks as well as desktop PCs.

  • PDF

A Study on Making Meju (Molded Soybean) for Traditional Jang (전통장의 메주 제조에 관한 연구)

  • Ann, Yong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.5
    • /
    • pp.670-676
    • /
    • 2016
  • In this study, we analyzed the utensils, covers and mats that were used for making meju, the shape of meju, and the heating method used for making meju from the 225 ways of preparing jang mentioned in the 32 volumes of the ancient cook books from 530 AD to 1950. The heating method of traditional meju bean and starch included 57 kinds of steaming, 59 of boiling, 21 of roasting + boiling, and 2 of cooking. The shape of meju included 41 kinds of egg, 27 of ball, 22 of lump, a kind of doughnut, 8 kinds of hilt, 6 of flat, 4 of chip, and a kind of square. Among the 72 gochoojang meju, the heating method of bean included 9 kinds of boiling, and 6 kinds of steaming; whereas the heating method of starch included 19 kinds of steaming of dough, 11 of rice cooking, and 5 of boiling of dough. The utensils for molding of bean meju were 49 kinds of straw sack, 14 of round straw container, 11 of heating bed, 7 of large straw bowl or Japanese-snailseed, 5 of jar, 4 of ditch, 3 of straw bowls, 2 of pottery steamer of dough, 2 of gourd, and a kind of long round bamboo bowl and sack of straw. The cover and the mat used for molding of meju included 36 kinds of straw, 17 kinds of paper mulberry leaf, 15 of wide straw seat, 14 of mugwort, 11 of pine tree leaf, 10 of soybean leaf, 6 of cocklebur leaf, 6 of sumac leaf, 6 of barley straw, 6 of mulberry leaf, 5 of fallen leaf, 5 of cogon grass, 4 of reed seat, 3 of scrap of cloth, 2 of Indian bean tree leaf, a kind of reed. There were only 5 kinds of hanging.

A Study on the Utility Interactive Photovoltaic System Using a Chopper and PWM Voltage Source Inverter for Air Conditioner a Clinic room (병실 냉.난방을 위한 초퍼와 PWM 전압형 인버터를 이용한 계통 연계형 태양광 발전시스템에 관한 연구)

  • Hwang, L.H.;Na, S.K.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.360-369
    • /
    • 2008
  • The solar cells should be operated at the maximum power point because its output characteristics were greatly fluctuated on the variation of insolation, temperature and load. It is necessary to install an inverter among electric power converts by means of the output power of solar cell is DC. The inverter is operated supply a sinusoidal current and voltage to the load and the interactive utility line. In this paper, the proposes a photovoltaic system is designed with a step up chopper and single phase PWM voltage source inverter. Synchronous signal and control signal was processed by one-chip microprocessor for stable modulation. The step up chopper is operated in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature for solar cell has typical dropping character. The single phase PWM voltage source inverter is consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be develop continuously by connecting with the source of electric power for ordinary using. It can be cause the efect of saving electric power, from 10 to 20%. The single phase PWM voltage source inverter operates in situation, that its output voltage is in same phase with the utility voltage. The inverter are supplies an ac power with high factor and low level of harmonics to the load and the utility power system.

Design of a Holter Monitoring System with Flash Memory Card (플레쉬 메모리 카드를 이용한 홀터 심전계의 설계)

  • 송근국;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 1998
  • The Holter monitoring system is a widely used noninvasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we design a high performance intelligent holter monitoring system which is characterized by the small-sized and the low-power consumption. The system hardware consists of one-chip microcontroller(68HC11E9), ECG preprocessing circuit, and flash memory card. ECG preprocessing circuit is made of ECG preamplifier with gain of 250, 500 and 1000, the bandpass filter with bandwidth of 0.05-100Hz, the auto-balancing circuit and the saturation-calibrating circuit to eliminate baseline wandering, ECG signal sampled at 240 samples/sec is converted to the digital signal. We use a linear recursive filter and preprocessing algorithm to detect the ECG parameters which are QRS complex, and Q-R-T points, ST-level, HR, QT interval. The long-term acquired ECG signals and diagnostic parameters are compressed by the MFan(Modified Fan) and the delta modulation method. To easily interface with the PC based analyzer program which is operated in DOS and Windows, the compressed data, that are compatible to FFS(flash file system) format, are stored at the flash memory card with SBF(symmetric block format).

  • PDF