• 제목/요약/키워드: Paper ash

검색결과 685건 처리시간 0.026초

부순모래를 사용한 초유동 콘크리트의 현장적용 (The Practical Application on the Super Flowing Concrete using Manufactured Sand)

  • 박칠림;권영호;이상수;원철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.9-14
    • /
    • 1998
  • In this paper, we described the basic elements(flowabiligy, fillingability, elapsed time, pumpability, no-vibrating effects, and etc.) required for the application and quality control of the super flowing concrete(SFC) in Top Down site. Also, manufactured sand and fly ash were used for investigating characteristics of SFC through various experiments(mix design, optimum mix condition) before placing the concrete in site. As a result of this project, the developed SFC shown high flowability and self-fillingability in the joint good enough for the requirement. Futhermore, inner uniformity of the no-vibrated concrete was verified by testing reformed space. Therefore, quality control and compressive strength(360kg/$\textrm{cm}^2$) can be secured by using SFC even without vibrating.

  • PDF

순환재료를 사용한 그린 변형 경화형 시멘트 복합체의 역학적 특성 (Mechanical Properties of Green Strain-Hardening Cement-based Composites with Recycled Materials)

  • 윤현도;김선우;이영오;남상현;차준호;김윤용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.399-400
    • /
    • 2010
  • 본 연구에서는 순환재료를 사용한 그린 변형 경화형 시멘트 복합체의 압축, 휨 및 직접 인장거동 특성에 대하여 평가한다. 순환재료로 재생 PET 섬유, 플라이애쉬 및 폐콘크리트로부터 생산된 순환잔골재 등이 사용되었다. 실험결과, 5개의 덤벨형 인장 시험편의 직접 인장강도는 4.76MPa, 휨 및 압축강도는 7.40MPa 및 38MPa로 각각 평가되었다.

  • PDF

Early Age Shrinkage by Self-Desiccation in Ultra-High-Strength Concrete

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.469-470
    • /
    • 2010
  • The high-strength concrete(HSC) compared to normal concrete represents higher autogenous shrinkage due to lower water-to-binder ratio(W/B) and supplementaries, fly ash(FA) and granulated blast-furnace slag(BFS), etc. The potential of early age cracking which reduces durability of concrete structures is normally influenced by autogenous shrinkage and degree of restraint. Therefore, this paper studies on the evaluation of the characteristics of autogenous shrinkage for HSC, ultra-high-strength concrete(UHSC) containing admixtures by experimental test and the test results are compared with existed prediction models.

  • PDF

Partial replacement of fine aggregates with laterite in GGBS-blended-concrete

  • Karra, Ram Chandar;Raghunandan, Mavinakere Eshwaraiah;Manjunath, B.
    • Advances in concrete construction
    • /
    • 제4권3호
    • /
    • pp.221-230
    • /
    • 2016
  • This paper presents a preliminary study on the influence of laterite soil replacing conventional fine aggregates on the strength properties of GGBS-blended-concrete. For this purpose, GGBS-blended-concrete samples with 40% GGBS, 60% Portland cement (PC), and locally available laterite soil was used. Laterite soils at 0, 25, 50 and 75% by weight were used in trails to replace the conventional fine aggregates. A control mix using only PC, river sand, course aggregates and water served as bench mark in comparing the performance of the composite concrete mix. Test blocks including 60 cubes for compression test; 20 cylinders for split tensile test; and 20 beams for flexural strength test were prepared in the laboratory. Results showed decreasing trends in strength parameters with increasing laterite content in GGBS-blended-concrete. 25% and 50% laterite replacement showed convincing strength (with small decrease) after 28 day curing, which is about 87-90% and 72-85% respectively in comparison to that achieved by the control mix.

Successive recycled coarse aggregate effect on mechanical behavior and microstructural characteristics of concrete

  • Ashish, Deepankar K.;Saini, Preeti
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.39-46
    • /
    • 2018
  • With the increase in industrialization and urbanization, growing demand has enhanced rate of new constructions and old demolitions. To avoid serious environmental impacts and hazards recycled concrete aggregates (RCA) is being adopted in all over the world. This paper investigates successive recycled coarse aggregates (SRCA) in which old concrete made with RCA in form of concrete cubes was used. The cubes were crushed to prepare new concrete using aggregates from crushing of old concrete, used as SRCA. The mechanical behavior of concrete was determined containing SRCA; the properties of SRCA were evaluated and then compared with natural aggregates (NA). Replacement of NA with SRCA in ratio upto 100% by weight was studied for workability, mechanical properties and microstructural analysis. It was observed that with the increase in replacement ratio workability and compressive strength decreased but in acceptable limits so SRCA can be used in low strength concretes rather than high strength concrete structures.

전위차 부식촉진법을 이용한 철근 콘크리트의 내부식성 예측을 위한 실험 연구 (An Experimental Study on the Prediction of Corrosion Resistance of Reinforced Concrete Using Accelerated Potentiometric Corrosion Test)

  • 오병환;조윤구;차수원;정원기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.71-76
    • /
    • 1996
  • Recently, large scale concrete structures exposed to severe environment are increasingly built in various locations. The corrosion may affect severely the durability and service life of such a concrete structure. It is, therefore, necessary to develop durable concrete to enhance the corrosion resistance. The corrosion resistance of concrete can be identified through accelerated corrosion test. The purpose of the present paper is, therefore, to devise a reasonable and accurate method to predict the amount of corrosion of reinforcing steels. The proposed method which is basically based on the concept of Faraday's Law, determines the corroded amount of a re-bar according to accelerated corrosion time. The corrosion is accelerated by employing the potentiometric corrosion test arrangement. The effects of admixtures in concrete including fly ash and silica fume have been also studied to explore the relative corrosion resistance of concrete.

  • PDF

부순모래를 사용한 초류동 콘크리트의 배합특성 (The Properties of the Super Flowing Concrete using manufactured sand)

  • 권영호;이상수;안재현;박칠림
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.83-88
    • /
    • 1997
  • In this paper, we described the basic elements (relative flowing area ratio and funeling velocity ratio in mortar, flowability and self-compactibility in concrete, and etc.) required for the maximum mix design of the super flowing concrete (SFC) using manufactured sand. Also, manufactured sand and fly ash were used for investigating characteristics of SFC through various experiments (replacement ratio of manufactured sand, optimum mix condition) before producing the concrete in batch plant. As the result of this project, the SFC using manufactured sand up to 50% showed high flowability and self-compactibility in fresh concrete. Furthermore, its compressive strength is higher than normal concrete without manufactured sand. From now on, this study may suggest how to apply manufactured sand in the SFC.

  • PDF

초기 양생조건에 따른 콘크리트의 건조수축 특성 (Influence of Curing Condition on Drying Shrinkage of Concrete)

  • 하재담;김태홍;유재상;이종열;배수호;권영호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.277-280
    • /
    • 2003
  • Material, mix proportion, curing condition, temperature, humidity and wind velocity have an influence on drying shrinkage of concrete. In this paper, to evaluate the effect of curing condition at early age on the drying shrinkage of concrete was investigated varying curing age for different binder. The principal conclusions from this research were as follows: 1) In case of 14 days of water curing, the drying shrinkage of concrete is smaller than 7 days of water curing, independence of type of binder. 2) In case of 4 days of water curing, the ratio of increase of drying shrinkage of concrete using fly-ash and slag powder is more remarkable than using portland cement alone, comparing the drying shrinkage of 7 days of water curing.

  • PDF

간편 배합설계방법을 통한 중간강도 자기충전 콘크리트의 특성 (Properties of Medium Strength Self-Compacting Concrete with Simple Mix design Method)

  • 최연왕;조선규;최욱;김경환;안성일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.83-88
    • /
    • 2003
  • In this paper, the medium strength self-compacting concrete with simple mix design method was manufactured and investigated about the properties of flowability and strength. Two types of binders like as fly-ash and RP(rock powder) were contained to the SCC in order to obtain the target medium strength of 270-350kgf/$cm^2$. The experimental tests about slump-flow, reaching time to the slump-flow of 50cm, V-funnel and U-box were carried out in accordance with the specified by the Japanese Society of Civil Engineering(JSCE). The mechanical properties such as compressive strength, splitting tensile strength and static modulus of elasticity were checked with the requirements specified by KS.

  • PDF

자력선별법에 의한 선탄의 탈황 (COAL DESULFURIZATION BY MAGNETIC SEPARATION METHODS)

  • 전호석;이재장
    • 산업기술연구
    • /
    • 제15권
    • /
    • pp.175-185
    • /
    • 1995
  • Under the new environmental regulations announced by the government, utilities will have to cut their sulfur dioxide emissions by 60% from 1991 levels by the year of 1999. Sulfur dioxide emissions can be reduced prior to combustion by physical, chemical or biological coal cleaning. The new technology of high gradient magnetic separation (HGMS) offers the potential of economic separatoins of a variety of fine, weakly magnetic minerals including inorganic sulfur and many ash-forming minerals from coals. In the present paper, magnetic separation tests have been conducted on Korean anthracite and high-sulfur Chinese coal to investigate the feasibility of these techniques for reducing sulfur content from coals. In wet magnetic separation, the studied operating parameters include particle size, pH, matrix types, feed solids content, feed rate, number of cleaning stages and etc. The results shows that for wet separation, 60~70% of total sulfur was removed from coals with over 80% combustible recovery, on the other hand, for dry separation, 47.6% of total sulfur was removed from coals with 75% recovery.

  • PDF