• Title/Summary/Keyword: Pantograph and catenary system

Search Result 134, Processing Time 0.029 seconds

The Study for Design of Tilting Mechanism and Guide Track of Pantograph for Tilting Train (틸팅열차용 판도그라프의 틸팅 기구장치 및 가이드 트랙 형상 설계 연구)

  • Kim Nam-Po;Han Seong-Ho;Ko Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.500-506
    • /
    • 2005
  • The development of tilting train has been required for speed-up on the conventional electric railroad due to the characteristic of Korean railroad with a lot of curve track. The study and development of a tilting system and a tilting bogie which have a different mechanism with high speed train will play a important role for enhancement of technology for Korean railway. The study for tilting pantograph mechanism to decrease the displacement between a catenary and a center of pantograph happened when the carbody is tilted in order to maintain the ride comfort and stability m a curving track is proceeding with the development of tilting train. In this paper, we introduce the design concept for the tilting mechanism of pantograph and the role and characteristics for several devices adopted in the tilting mechanism of pantograph. Through the kinematic analysis of tilting mechanism, we will obtain and calculate the optimal tilting angular velocity and acceleration in order to keep the contact behavior of a pantograph and a catenary according to tilting of a carbody.

Analysis on the current collection characteristics of the KHST in high speed range over 300km/h (300km/h이상 고속대역에서 한국형 고속열차의 집전특성 분석)

  • Mok Jin-Yong;Park Choon-Soo;Kim Ki-Hwan;Kim Young-Guk
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.356-361
    • /
    • 2005
  • The Korean High Speed Train(KHST) had been developed and evaluating on the Kyoung-Bu High Speed Line by through 'G7-R&D project'. In order to evaluate the function and characteristics of high speed train system, various experimental conditions have been considered and conducted. In this paper, current collection characteristics of KHST between pantograph and catenary system and dynamic behaviors are measured and analysed over 300 to 350km/h in running speed of KHST. A measuring system which was developed and installed on the Korean High Speed Train for the performance and mechanical characteristics of the KHST pantograph is used for this trial running test and we proofed that KHST has a remarkable and stable current collection characteristics as it had been designed.

  • PDF

On the Implementation of an Advanced Judgement Algorithm for Contact Loss of Catenary System (전차선의 집전상태 판단 알고리즘 구현)

  • Park, Young;Jung, Ho-Sung;Yun, Il-Kwon;Kim, Wonha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.850-854
    • /
    • 2014
  • Analyzing dynamic performance between pantograph and contact wire depends on mechanical and electrical conditions such as contact force, currents, aerodynamics of pantograph and tension of overhead contact wire. For the characteristic of dynamic performance between pantograph and overhead contact wire, various evaluation systems are used to measuring of the interaction of the contact line and the pantograph. Among the various methods, the contact force and percentage of arcing are intended to prove the safety and the quality of the current collection system on the train. However, these methods are only capable of measuring on the train which are installed measurement systems. Therefore in this paper, a track-side monitoring system was implemented to measure electrical characteristics from active overhead contact wire systems in order to constantly estimate current collection performance of railway operation. In addition, a method to analyze loss of contact phenomena was proposed. According to simulation results, the proposed system was capable of measuring abnormal electrical behavior of pantograph and contact wires on the track-side. The advantage of the proposed system is possible to detect loss of contact or any other electrical abnormalities of all types of trains within sections from sub to sub without the need to install any on-board equipment on trains.

Implementation Technique of Real-time Monitoring System for High-Speed Rail Contact Wire with High Tension (고속철도 전차선로 고장력 실시간 모니터링 기술 구현)

  • Cho, Yong Hyeon;Park, Young;Jung, Hyun Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1256-1261
    • /
    • 2015
  • Along with the increase of railway catenary system operation speed to 400 km/h, there have been growing demands for good quality current collection systems that satisfy quality standards as well as criteria for safe working. Retaining uniform elasticity tension of contact wires is essential in maintaining high quality contact between pantograph and OCL (Overhead Contact Line) of current collection systems in high speed railways. Therefore, the tension of contact wire must be kept within tight tolerance limits in both working conditions and adverse weather conditions of catenary system. In accordance with these conditions, this paper presents a real time monitoring system for the tensioning device of the newly installed catenary system on the special route of Honam high speed line for 400 km/h operation. For the verification of the true value of tension of contact wires, we have developed ring-type tensioning sensors which were installed on supporting points of mast which compose the catenary system. According to the field test performed on the Honam high speed line catenary system, variation of tension was measured accurately in real-time.

An Implementation of Wireless Based Sensing System for Catenary Deicing (무선기반 전차선로의 해빙 감지시스템 구현)

  • Kim, Joo-Uk;Na, Kyung-Min;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.512-515
    • /
    • 2019
  • Overhead contact systems (OCS) consist of contact and messenger wires, in which the contact wire supplies electric energy to the railway vehicle by contacting a pantograph. However, this mechanical contact is interrupted during frosts or temperatures below $0^{\circ}C$ in the winter. In these conditions, railway vehicle accidents can occur during operation because of the low energy efficiency that results from the increase in the arcing between the contact wire and pantograph. Therefore, the detection of frost or freezing temperatures is necessary to maintain the stable operation of these trains. In this study, we proposed the development of a frost or freezing condition monitoring system on the OCSs that utilizes wireless communication.

Development of Catenary Stagger and Height Measurement System using Laser (레이저를 이용한 전차선 편위 및 높이 측정 시스템 개발)

  • Song, Sung-Gun;Lee, Teak-Hee;Song, Jae-Yeol;Park, Seong-Mo
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.569-574
    • /
    • 2008
  • Catenary and Pantograph are used to transmit electrical energy to electric railways. Catenary (Overhead Contact Lines) should be installed precisely and managed for stable train operations. But external factors such as weather, temperature, etc., or aging affect catenary geometry. Changed catenary stagger and height cause high voltage spark or instant electric contact loss. Big spark derived from contact loss can damage the pantograph carbon strip and overhead contact lines that might interrupt the train operations. Therefore, to prevent a big scale spark or electric contact loss, catenary maintenance are required catenary geometry measurement systems with catenary maintenance capability. In this paper, we describe the development of catenary height and stagger measurement system. The catenary height and stagger measurement system uses Acuity company's AR4000 Laser Range Finder for distance measurement and AccuRange Line Scanner for degree measurement. This system detects suspicious overhead line sections with excessive stagger and height stagger variance.

A Study on the Measurement of Contact Force of Pantograph on High Speed Train

  • Seo Sung-Il;Cho Yong-Hyun;Mok Jin-Yong;Park Choon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1548-1556
    • /
    • 2006
  • Appropriate contact force is required for the pantograph on the high speed train to collect current from the catenery system without separation. However, at high speed, large aerodynamic lifting force is generated by the contact plate and the body of pantograph, which may cause wear of the contact wire. In this study, to confirm the interface performance of the pantograph on Korea High Speed Train, a method to measure the contact force of the pantograph was proposed and the related measuring system was developed. The forces acting on the pantograph were clarified and a practical procedure to estimate the forces was proposed. A special device was invented and applied to measure the aerodynamic lifting force. Measured contact forces were displayed by the developed system and evaluated based on the criteria.

Rail Road Electric Traction System (철도 전기 시스템)

  • Gopal, Devarajan;Lho, Young-Hwan;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.646-658
    • /
    • 2006
  • In this paper, the details of electric traction voltages which are widely used for metro and mainline trains are presented. The problems encountered in catenaries, pressure of the pantograph pan, catenary contact cross sectional area, materials etc are well covered. Catenary height from the rail for main line, bridges, sheds etc is discussed. The catenary running details and switching of one catenary to another are explained. The dead zones in 3 phase grid as well as in DC are presented here. The pantograph structure, blades, shoes etc. for AC/DC EMUs are dealt. The schematic diagram for electrification systems used for railways are given and explained with typical electrical parameters of Indian Railways.

  • PDF

Analysis of the Current-Collection Performance of a High-Speed Train Using Finite Element Analysis Method (유한 요소 해석 기법을 이용한 고속 철도 차량의 집전 성능 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Kim, Young-Guk;Park, Chan-Kyoung;Paik, Jin-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.827-833
    • /
    • 2011
  • In this study, a simulation model to estimate the current-collection performance of a high-speed train was developed by using a commercial finite element analysis software, SAMCEF. A three-dimensional springDdamperDmass model of a pantograph was created, and its reliability was validated by comparing the receptance of the model to that of the actual pantograph. The wave propagation speed of the catenary model was compared with the analytical wave propagation speed of the catenary system presented in the UIC 799 OR standard. The length of the droppers was controlled, and the pre-sag of the contact wire due to gravity was considered. The catenary and the pantograph were connected by using a contact element, and the contact force variation when the pantograph was moved at velocities of 300 km/h and 370 km/h was obtained. The average, standard deviation, maximum, and minimum values of the contact force were analyzed, and the effectiveness of the developed simulation model was examined.

Test and Evaluation of the Pantograph for Korean High Speed Train (한국형 고속전철 집전장치의 성능 계측 및 평가)

  • 서승일;박춘수;조용현;최강윤;목진용
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.94-99
    • /
    • 2003
  • The pantograph for Korean High Speed Train was developed by home-grown technology. In this study, test and evaluation of the current collection performance of the pantograph is conducted. For this purpose, a measuring system is developed and installed on the prototype high speed train. Measurement is conducted while the train runs on the test track. The measuring system is composed of video monitoring system and telemetry & data processing system. It monitors the hazard behavior of the pantograph and measures acceleration and vertical force of the pan head. By applying the measuring system, accurate evaluation of the performance of the pantograph and safety assessment of the interface system of pantograph and catenary is facilitated.