• Title/Summary/Keyword: Pantograph and catenary system

Search Result 134, Processing Time 0.023 seconds

A Study on Technologies for Measuring Static Condition of Rigid Conductor System in Railway Electrification (전기철도 강체전차선로의 정적 상태 검출 기술 연구)

  • Na, Kyung Min;Lee, Kiwon;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.507-511
    • /
    • 2019
  • The purpose of an electric railway system contact wire is to supply electric energy to trains through a contacted pantograph. This energy is then converted into mechanical energy. Recent developments in overhead contact lines include the increase in the tension force up to 34 kN according to train speeds that reach up to 400 km/h with a verified safety. Rigid conductor catenary (R-Bar) for high speeds of up to 250 km/h have been developed in tunnels to save on construction costs. This is significant because minor defects in R-bars in aspects, such as height and stagger affect installation conditions. In this study, we propose the use of a detector that measures the static characteristics to reduce the R-bar installation errors. This detector has been developed to measure the height and stagger of the contact wire using video images.

The Development of a Sliding Joint for Very Flexible Multibody Dynamics (탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발)

  • Seo Jong-Hwi;Jung Il-Ho;Sugiyama Hiroyuki;Shabana Ahmed A.;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

An Implement of Vision based Measurement Technology for Traction Power System up to 250 km/h (250 km/h급 전철설비의 비전기반 검측 기술 구현)

  • Park, Young-Sig;Na, Kyung-Min;Park, Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.976-980
    • /
    • 2018
  • The traction power system is configured to transmit electricity to the vehicles through mechanical contact between the OCL (Overhead Contact Line) and the pantograph. The system measures the current collection performance of the OCL, or the OCL installation condition is examined through maintenance for commercial operation. Maintenance continues to check the conditions through visual inspection by walking and inspection vehicles. The current collection performance is divided into the percentage of arcing(%), the contact force, and the uplift. The percentage of arcing is composed of a vision based system and used to verify the performance of a new OCL. However, it is not always possible to measure the current collection performance during commercial operation, and maintenance based on human resources can not be replaced. This paper presents the minimum performance condition of video devices in the current collection system of commercial vehicles. In addition, a continuous arcing was measured, and current collection performance was examined on the traction power system at the 250 km/h. It was analyzed with a minimum duration of arc of 1 ms. The frame rate is then shown by comparing the number of frames in the image at the time intervals of the number of the arcing. It is expected that the result of this study can be used for examining the minimum performance of video devices depending on their purpose.

A Development of Intelligent Controller for Phase Control in Main Circuit Breaker (주회로차단기 투입전원 위상제어를 위한 지능형 제어기 개발)

  • Oh, Yong-Kuk;Kim, Jae-Won;Ryu, Joon-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.755-761
    • /
    • 2017
  • In railways powered by AC power, the main circuit breaker (MCB) is used for supplying the electric power to the catenary of the vehicle. Generally, the main circuit breaker is located between the pantograph and the main transformer, and the phase of the power applied to the vehicle changes according to the operation timing of the main circuit breaker. The operation of the main circuit breaker should be actively controlled according to the phase of the power source, since the phase of the power causes unintended transient states in the vehicle's electrical system in the form of an inrush current and surge voltage. However, the MCB has a delay time when it operates which is not constant. Therefore, an intelligent controller is needed to predict the operation delay time and control the opening and closing of the MCB.