• Title/Summary/Keyword: Pancreatic beta cells

Search Result 149, Processing Time 0.024 seconds

Expression of c-Jun in pancreatic islet $\alpha$-cells of nonobese diabetic(NOD) mice

  • Park, Sang-Joon;Lee, Sae-Bom;Choi, Yang-Kyu;Lee, Chul-Ho;Hyun, Byung-Hwa;Lee, Keun-Joa;Ryu, Si-Yun;Cho, Sung-Whan;Song, Jae-Chan;Lee, Cha-Soo;Jeong, Kyu-Shik
    • Korean Journal of Veterinary Pathology
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 1998
  • This is the first report of c-Jun protein expression and mRNA in a pancreatic islet in a nonobese diabetic(NOD) state mice. In this experiment NOD mice with insulin-dependent diabetes mellitus type I at age 16 weeks(n=7) just before death(n=4) were used. The control group consist of prediabetic NOD(8 weeks n=7) and ICR(8 weeks n=7 and 16 weeks n=7) mice. c-Jun positive cells in the pancreatic islet of NOD mice were localized in the same positions as a-glucagon producing cells. immunoreactivity was negative in the prediabetic NOD(8 weeks) and ICR(8 weeks and 16 weeks) mice. The number of c-Jun positive cells in mice with severe diabetic state just before death were significantly decreased when compared to NOD(16 weeks) mice. Expression of c-Jun in mRNA level was assessed by RT-PCR method. The levels of mRNA in NOD(16 weeks) mice group were elevated in total pancreatic tissues. The present results suggest that the induction of proto-oncogene protein may be of significance in assessing cell specific injury and may play a functional role between pancretic islet $\alpha$-cells and $\beta$-cells in the diabetic state.

  • PDF

Effects of Gyeongshingangjeehwan 18 on Pancreatic Fibroinflammation in High-Fat Diet-Fed Obese C57BL/6J Mice

  • Jang, Joonseong;Park, Younghyun;Yoon, Michung
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.341-348
    • /
    • 2018
  • The polyherbal drug Gyeongshingangjeehwan 18 (GGEx18) from Rheum palmatum L. (Polygonaceae), Laminaria japonica Aresch (Laminariaceae), and Ephedra sinica Stapf (Ephedraceae) has traditionally been used as an antiobesity drug in Korean local clinics. This study investigates the effects of GGEx18 on pancreatic fibroinflammation in high-fat diet (HFD)-fed obese C57BL/6J mice and the molecular mechanism involved in this process. After HFD-fed obese C57BL/6J mice were treated with GGEx18 (125, 250, and 500 mg/kg) for 12 weeks, variables and determinants of obesity, pancreatic inflammation, and fibrosis were measured using histology, immunohistochemistry, and real-time polymerase chain reaction. Administration of GGEx18 at 500 mg/kg/day to obese mice decreased body weight gain, mesenteric adipose tissue mass, and adipocyte size. GGEx18 treatment not only reduced mast cells and CD68-immunoreactive cells, but also decreased collagen levels and ${\alpha}$-smooth muscle actin-positive cells in the pancreas of HFD-fed mice. Concomitantly, GGEx18 decreased the expression of genes for inflammation (i.e., CD68 and tumor necrosis factor ${\alpha}$) and fibrosis (i.e., collagen ${\alpha}1$ and transforming growth factor ${\beta}$) in the pancreas of obese mice. These results suggest that GGEx18 may inhibit visceral obesity and related pancreatic fibroinflammation in HFD-fed obese mice.

Pretreatment with SAENGCHINYANGHYOLTANG to prevent the pancreatic enzymes changes by streptozotocin in rats (고혈당(高血糖) 쥐의 췌장(膵臟) 효소활성(酵素活性)에 미치는 생진양혈탕(生津養血湯)의 영향(影響))

  • Kim, Shin-Soek;Choi, Jong-Won;Lee, Cheol-Whan
    • The Journal of Korean Medicine
    • /
    • v.15 no.2 s.28
    • /
    • pp.429-444
    • /
    • 1994
  • The present study was undertaken in order to elucidate the effect of pretreatment with Saengchinyanghyoltang(SYT) on changes in serum glucose level, body weight. water consumption. serum insulin concentration and activities of pancreatic enzymes in rats treated with streptozocin(STZ)-induced diabetic state. Histological studies were also carried out to elevate the effects on pancreatic tissues and Langelhans islet cells. SYT pretreatment in STZ diabetic rats inhibited the rise of fasting serum glucose concentration and water consumption. Pretreatment with SYT significantly increased the concentration of blood insulin and body weight changes compared to the STZ-treated group. Pancreatic lipase and trypsin activities were increased. but amylase activity was decreased and pancreatic ${\beta}-cell$ was destroyed by STZ but. pretreatment with SYT prevented these STZ-induced changes.

  • PDF

Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury

  • Karaoz, Erdal;Tepekoy, Filiz;Yilmaz, Irem;Subasi, Cansu;Kabatas, Serdar
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • Objective : Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI. Methods : rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, $S100{\beta}$, brain derived neurotrophic factor (BDNF), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor $[TGF]-{\beta}$, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors. Results : rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), ${\beta}3$-tubulin and nestin as well as anti-inflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined. Conclusion : Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.

Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms

  • Ahn, Joung Hoon;Kim, Min Hye;Kwon, Hyung Joo;Choi, Soo Young;Kwon, Hyeok Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • Palmitic acid (PAM), one of the most common saturated fatty acid (SFA) in animals and plants, has been shown to induce apoptosis in exocrine pancreatic AR42J cells. In this study, we investigated cellular mechanisms underlying protective effects of oleic acid (OLA) against the lipotoxic actions of PAM in AR42J cells. Exposure of cells to long-chain SFA induced apoptotic cell death determined by MTT cell viability assay and Hoechst staining. Co-treatment of OLA with PAM markedly protected cells against PAM-induced apoptosis. OLA significantly attenuated the PAM-induced increase in the levels of pro-apoptotic Bak protein, cleaved forms of apoptotic proteins (caspase-3, PARP). On the contrary, OLA restored the decreased levels of anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, and Mcl-1) in PAM-treated cells. OLA also induced up-regulation of the mRNA expression of Dgat2 and Cpt1 genes which are involved in triacylglycerol (TAG) synthesis and mitochondrial ${\beta}$-oxidation, respectively. Intracellular TAG accumulation was increased by OLA supplementation in accordance with enhanced expression of Dgat2 gene. These results indicate that restoration of anti-apoptotic/pro-apop-totic protein balance from apoptosis toward cell survival is involved in the cytoprotective effects of OLA against PAM-induced apoptosis in pancreatic AR42J cells. In addition, OLA-induced increase in TAG accumulation and up-regulation of Dgat2 and Cpt1 gene expressions may be possibly associated in part with the ability of OLA to protect cells from deleterious actions of PAM.

Aloe-Emodin Protects RIN-5F (Pancreatic β-cell) Cell from Glucotoxicity via Regulation of Pro-Inflammatory Cytokine and Downregulation of Bax and Caspase 3

  • Alshatwi, Ali A;Subash-Babu, P.
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • To determine the protective effect of aloe-emodin (AE) from high glucose induced toxicity in RIN-5F (pancreatic ${\beta}$-cell) cell and restoration of its function was analyzed. RIN-5F cells have been cultured in high glucose (25 mM glucose) condition, with and without AE treatment. RIN-5F cells cultured in high glucose decreased cell viability and increased ROS levels after 48 hr compared with standard medium (5.5 mM glucose). Glucotoxicity was confirmed by significantly increased ROS production, increased pro-inflammatory (IFN-${\gamma}$, IL-$1{\beta}$,) & decreased anti-inflammatory (IL-6&IL-10) cytokine levels, increased DNA fragmentation. In addition, we found increased Bax, caspase 3, Fadd, and Fas and significantly reduced Bcl-2 expression after 48 hr. RIN-5F treated with both high glucose and AE ($20{\mu}M$) decreased ROS generation and prevent RIN-5F cell from glucotoxicity. In addition, AE treated cells cultured in high glucose were transferred to standard medium, normal responsiveness to glucose was restored within 8hr and normal basal insulin release within 24 hr was achieved when compared to high glucose.

Regulatory T Cells Promote Pancreatic Islet Function and Viability via TGF-β1 in vitro and in vivo (조절 T 세포 유래 TGF-β1에 의한 췌장섬세포의 기능 및 활성 증가)

  • Choi, Bongkum;Kim, Sa-Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.3
    • /
    • pp.304-312
    • /
    • 2018
  • Regulatory T cells (Treg), known as immune-suppressors, may help modulate the immune response. In this study, we investigated the effect of Treg-derived $TGF-{\beta}1$ on pancreatic islet cell function in vitro and in vivo. One hundred eighty IEQ (islet equivalents) of pancreatic islets, the marginal amount to regulate blood glucose level after syngeneic islet transplantation in mouse type 1 diabetes (T1D) model, were co-cultured with $4{\times}10^6$ Treg cells for 48 hours. The changes in $TGF-{\beta}1$, interleukin-6 (IL-6), and insulin secretion levels were measured and analyzed among the Treg-only group, the islet-only group, and the Treg/islet co-cultured group. In the Treg/islet co-cultured group, IL-6 and insulin secretion levels were increased (P<0.0005, P<0.005) and islet viability was improved (P<0.005) compared with the islet-only group. Furthermore, after transplantation, the co-cultured islets regulated blood glucose levels efficiently in the T1D mouse model. These data suggest that Treg could improve islet functions and viability via the $TGF-{\beta}1$ secretion pathway (P<0.05~0.005), thus the use of Treg in islet transplantation should be explored further.

Effects of Saengjihwangeumja-gami on STZ-induced Diabetic Mice (생지황음자가미(生地黃飮子加味)가 Streptozotocin으로 유발된 당뇨생쥐에 미치는 영향(影響))

  • Kim, Hee-Chul;Choi, Chang-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.12-47
    • /
    • 2005
  • First, mice were dosed with 50mg/kg of streptozotocin(STZ) twice every 24 hours to cause high blood-sugar. Then, after three days, mice were injected with 100mg/kg of STZ again. Two different dosages of Saengjihwangeumja-gami were given to the experiment groups: SA group, 15mg/kg/day, and SB group, 90mg/kg/day, in order to determine the effects of Saengjihwangeumja-gami, which has been known to be good for DM(Diabetes Mellitus). By observing weight and blood-sugar level changes, blood tolerance, the numerical value of BUN(Blood Urea Nitrogen) and creatinine in blood, and through light-electronicmicroscopic and immunohistologic investigations of pancreas and kidneys, the following results were obtained: 1. The experiment groups showed a high suppressive effect of weight-loss. 2. The experiment groups' blood-sugar and blood tolerance showed an effective lowering of blood-sugar levels. 3. The experiment groups did not show any noticeable change in the numerical value of BUN and creatinine in blood compared with that of the control groups. 4. The experiment groups showed a higher Insulin positive reaction of pancreatic islets ${/beta}-cell$ than the control groups. 5. The experiment groups showed a higher immuno-reaction against IGF- II than the control groups. 6. Observation of apoptosis of the pancreatic islets showed that the cells of experiment groups were less injured compared with those of the control groups, and fewer apoptag-positive reaction cells were seen in experiment groups than in the control groups. 7. Uunder electron-microscopy, the insulin-containing granules in pancreatic islets ${/beta}-cells$ had increased more in the experiment groups than in the control groups. 8. Under light microscopy, the injury on the inner & outer membrane of the glomerulus and epithelial cells of capillaries and cells among vessels were fewer in the experiment groups than in the control groups. 9. More apoptag-positive reaction cells in the kidney were seen in the control groups than in the experiment groups. 10. PAS-positive reaction substances had increased more in the substrate among the vessels of a glomerulus belonging to the control group than those of the experiment group. 11. Uunder electron-microscopy, the nucleonic membrane, nucleoplasm and mitochondria of proximal and distal renal tubular were more injured in the control groups than in the experiment groups. In conclusion, strong evidence for the efficacy of Saengjihwangeumja-gami in lowering blood-sugar, and in recovery and generation of pancreatic tissues injured by DM was observed. Results suggest Saengjihwangeumja-gami is an effective treatment for DM. Further study of the principles of blood-sugar dropping effects of Saengjihwangeumja-gami are needed, as well as further study of recovery and regeneration of pancreatic tissues injured by DM.

  • PDF

Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells

  • Ju, Sung Mi;Youn, Gi Soo;Cho, Yoon Shin;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.172-177
    • /
    • 2015
  • Upregulation of pro-inflammatory mediators contributes to ${\beta}$-cell destruction and enhanced infiltration of immune cells into pancreatic islets during development of type 1 diabetes mellitus. In this study, we examined the regulatory effects and the mechanisms of action of celastrol against cytotoxicity and pro-inflammatory immune responses in the RINm5F rat pancreatic ${\beta}$-cell line stimulated with a combination of interleukin-1 beta, tumor necrosis factor-alpha, and interferon-${\gamma}$. Celastrol significantly restored cytokine-induced cell death and significantly inhibited cytokine-induced nitric oxide production. In addition, the protective effect of celastrol was correlated with a reduction in pro-inflammatory mediators, such as inducible nitric oxide synthase, cyclooxygenase-2, and CC chemokine ligand 2. Furthermore, celastrol significantly suppressed cytokine-induced signaling cascades leading to nuclear factor kappa B (NF-${\kappa}B$) activation, including $I{\kappa}B$-kinase (IKK) activation, $I{\kappa}B$ degradation, p65 phosphorylation, and p65 DNA binding activity. These results suggest that celastrol may exert its cytoprotective activity by suppressing cytokine-induced expression of pro-inflammatory mediators by inhibiting activation of NF-${\kappa}B$ in RINm5F cells.

Effect of Palmiwon on the Streptozotocin induced Prediabetic Model in Panceratic Bita Cells (췌장베타세포에서 스트렙토초토신으로 유도한 당뇨병 실험 모델에 대한 팔미원의 영향)

  • 이인순;이인자
    • Biomolecules & Therapeutics
    • /
    • v.6 no.4
    • /
    • pp.371-377
    • /
    • 1998
  • The aim of the present study was to investigate the effect of Palmiwon on the type 1-prediabetic models induced by streptozotocin (STZ) in RINm5F cells and HIT-T15 cells. Palmiwon increased the cell proliferation and insulin release when pre- and post-treated for the STZ-exposed pancreatic beta cells. The cell proliferation and insulin release of these beta cells were measured by $^3$H-thymidine uptake and RIA, respectively. We also analyzed nutrients such as sugars, fatty acid and amino acids and minerals containing in Palmiwon using by gas chromatography, amino acid analyzer and AA spectrometer, respectively. Palmiwon seems to have protective and recovery properties on the prediabetic model in cellular level, which were ascribe to various nutrients and minerals containing in Palmiwon. From these results, it could be suggested that Palmiwon may be available as preventive and therapeutic prescription of type 1 diabetes mellitus.

  • PDF