Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.056

Aloe-Emodin Protects RIN-5F (Pancreatic β-cell) Cell from Glucotoxicity via Regulation of Pro-Inflammatory Cytokine and Downregulation of Bax and Caspase 3  

Alshatwi, Ali A (Adipogenesis and Immunobiology Research Lab, Department of Food Sciences and Nutrition, College of Food Sciences and Agriculture, King Saud University)
Subash-Babu, P. (Adipogenesis and Immunobiology Research Lab, Department of Food Sciences and Nutrition, College of Food Sciences and Agriculture, King Saud University)
Publication Information
Biomolecules & Therapeutics / v.24, no.1, 2016 , pp. 49-56 More about this Journal
Abstract
To determine the protective effect of aloe-emodin (AE) from high glucose induced toxicity in RIN-5F (pancreatic ${\beta}$-cell) cell and restoration of its function was analyzed. RIN-5F cells have been cultured in high glucose (25 mM glucose) condition, with and without AE treatment. RIN-5F cells cultured in high glucose decreased cell viability and increased ROS levels after 48 hr compared with standard medium (5.5 mM glucose). Glucotoxicity was confirmed by significantly increased ROS production, increased pro-inflammatory (IFN-${\gamma}$, IL-$1{\beta}$,) & decreased anti-inflammatory (IL-6&IL-10) cytokine levels, increased DNA fragmentation. In addition, we found increased Bax, caspase 3, Fadd, and Fas and significantly reduced Bcl-2 expression after 48 hr. RIN-5F treated with both high glucose and AE ($20{\mu}M$) decreased ROS generation and prevent RIN-5F cell from glucotoxicity. In addition, AE treated cells cultured in high glucose were transferred to standard medium, normal responsiveness to glucose was restored within 8hr and normal basal insulin release within 24 hr was achieved when compared to high glucose.
Keywords
Aloe-emodin; Glucotoxicity; RIN-5F cells; Apoptosis; ROS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hodgin, J. B., Nair, V., Zhang, H., Randolph, A., Harris, R. C., Nelson, R. G., Weil, E. J., Cavalcoli, J. D., Patel, J. M., Brosius, F. C. and Kretzler, M. (2013) Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62, 299-308.   DOI
2 Jialal, I., Devaraj, S. and Venugopal, S. K. (2002) Oxidative stress, inflammation, and diabetic vasculopathies: the role of alpha tocopherol therapy. Free Radic. Res. 36, 1331-1336.   DOI
3 Lee, J. H., Jung, I. R., Choi, S. E., Lee, S. M., Lee, S. J., Han, S. J., Kim, H. J., Kim, D. J., Lee, K. W. and Kang, Y. (2014) Toxicity generated through inhibition of pyruvate carboxylase and carnitine palmitoyl transferase-1 is similar to high glucose/palmitate-induced glucolipotoxicity in INS-1 beta cells. Mol. Cell Endocrinol. 383, 48- 59.   DOI
4 Leite, M., Quinta-Costa, M., Leite, P. S. and Guimmaraes, J. E. (1999) Critical evaluation of techniques to detect and measure cell deathstudy in a model of UV radiation of the leukaemic cell line HL60. Anal. Cell Pathol. 19, 139-151.   DOI
5 Ly, J. D., Grubb, D. R. and Lawen, A. (2003) The mitochondrial membrane potential (${\Delta}\psi$m) in apoptosis; an update. Apoptosis 8, 115- 128.   DOI
6 Maedler, K., Spinas, G. A., Lehmann, R., Sergeev, P., Weber, M., Fontana, A., Kaiser, N. and Donath, M. Y. (2001) Glucose induces bcell apoptosis via upregulation of the Fas-receptor in human islets. Diabetes 50, 1683-1690.   DOI
7 Maedler, K., Sergeev, P., Ris, F., Oberholzer, J., Joller-Jemelka, H. I., Spinas, G. A., Kaiser, N., Halban, P. A. and Donath, M. Y. (2002) Glucose-induced beta cell production of IL-1 beta contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110, 851- 860.   DOI
8 Mauricio, D. and Mandrup-Poulsen, T. (1998) Apoptosis and the pathogenesis of IDDM. A question of life and death. Diabetes 47, 1537- 1543.   DOI
9 Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63.   DOI
10 Park, M. H., Han, J. S. (2014) Padina arborescens extract protects high glucose-induced apoptosis in pancreatic b cells by reducing oxidative stress. Nutr. Res. Pract. 8, 494-500.   DOI
11 Piro, S., Anello, M., Di Pietro, C., Lizzio, M. N., Patan, G., Rabuazzo, A. M., Vigneri, R., Purrello, M. and Purrello, F. (2002) Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism 51, 1340-1347.   DOI
12 Robertson, R. P., Olson, L. K. and Zhang, H. J. (1994) Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene. Diabetes 43, 1085-1089.   DOI
13 Saito, K., Yaginuma, N. and Takahashi, T. (1979) Differential volumetry of alpha, beta and delta cells in the pancreatic islets of diabetic and non diabetic subjects. Tohoku J. Exp. Med. 129, 273-283.   DOI
14 Subash-Babu, P. and Alshatwi, A. A. (2012) Aloe-emodin inhibits adipocyte differentiation and maturation during in vitro human mesenchymal stem cell adipogenesis. J. Biochem. Mol. Toxicol. 26, 291-300.   DOI
15 Subash-Babu, P., Ignacimuthu, S. and Alshatwi, A. A. (2015) Nymphayol increases glucose-stimulated insulin secretion by RIN-5F cells and GLUT4-mediated insulin sensitization in type 2 diabetic rat liver. Chem. Biol. Interact. 25, 72-81.
16 Winnay, J. N., Dirice, E., Liew, C. W., Kulkarni, R. N. and Kahn, C. R. (2014) $p85{\alpha}$ deficiency protects ${\beta}$-cells from endoplasmic reticulum stress-induced apoptosis. Proc. Natl. Acad. Sci. U.S.A. 111, 1192-1197.   DOI
17 Tajiri, Y., Moller, C. and Grill, V. (1977) Long-term effects of aminoguanidine on insulin release and biosynthesis: evidence that the formation of advanced glycosylation end products inhibits B cell function. Endocrinology 138, 273-280.
18 Wang, H. and Joseph, J. A. (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612-616.   DOI
19 Wasserman, L., Avigad, S., Beery, E., Nordenberg, J. and Fenig, E. (2002) The effect of aloe emodin on the proliferation of a new Merkel carcinoma cell line. Am. J. Dermatopathol. 24, 17-22.   DOI
20 Yuan, J. S., Reed, A., Chen, F. and Stewart, C. N. Jr. (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85.   DOI
21 Zhang, X., Zhang, R., Lv, P., Yang, J., Deng, Y., Xu, J., Zhu, R., Zhang, D. and Yang, Y. (2015) Emodin up-regulates glucose metabolism, decreases lipolysis, and attenuates inflammation in vitro. J. Diabetes 7, 360-368.   DOI
22 Chen, H. C., Hsieh, W. T., Chang, W. C. and Chung, J. G. (2004) Aloeemodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells. Food Chem. Toxicol. 42, 1251-1257.   DOI
23 Anand, S., Muthusamy, V. S., Sujatha, S., Sangeetha, K. N., Bharathi Raja, R., Sudhagar, S., Poornima Devi, N. and Lakshmi, B. S. (2010) Aloe emodin glycosides stimulate glucose transport and glycogen storage through PI3K dependent mechanism in L6 myotubes and inhibits adipocyte differentiation in 3T3L1 adipocytes. FEBS Lett. 584, 3170-3178.   DOI
24 Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., Brunskill, E. W., Sayen, M.R., Gottlieb, R. A., Dorn, G. W., Robbins, J. and Molkentin, J. D. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658-662.   DOI
25 Bernard, C., Berthault, M. F., Saulnier, C. and Ktorza, A. (1999) Neogenesis vs. apoptosis as main components of pancreatic beta cell ass changes in glucose-infused normal and mildly diabetic adult rats. FASEB J. 13, 1195-1205.   DOI
26 Donath, M. Y., Gross, D. J., Cerasi, E. and Kaiser, N. (2001) Hyperglycemia induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 48, 738- 744.
27 Fenig, E., Nordenberg, J., Beery, E., Sulkes, J. and Wasserman, L. (2004) Combined effect of aloe-emodin and chemotherapeutic agents on the proliferation of an adherent variant cell line of Merkel cell carcinoma. Oncol. Rep. 11, 213-217.
28 Duncan, B. D. (1957) Multiple range test for correlated and heteroscedastic means. Biometrics 13, 164-176.   DOI
29 Efanova, I. B., Zaitsev, S. V., Zhivotovsky, B., Kohler, M., Efendic, S., Orrenius, S. and Berggren, P. O. (1998) Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular $Ca^{2+}$ concentration. J. Biol. Chem. 273, 33501-33507.   DOI
30 Federici, M., Hribal, M., Perego, L., Ranalli, M., Caradonna, Z., Perego, C., Usellini, L., Nano, R., Bonini, P., Bertuzzi, F., Marlier, L. N. Davalli, A.M., Carandente, O., Pontiroli, A.E., Melino, G., Marchetti, P., Lauro, R., Sesti, G. and Folli, F. (2001) High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 50, 1290-1301.   DOI
31 Gepts, W. and Lecompte, P. M. (1981) The pancreatic islets in diabetes. Am. J. Med. 70, 105-114.   DOI
32 Giannoukakis, N., Rudert, W. A., Ghivizzani, S. C., Gambotto, A., Ricordi, C., Trucco, M. and Robbins, P. D. (1999) Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1betainduced beta-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 48, 1730-1736.   DOI
33 Hamman, J. H. (2008) Composition and applications of Aloe vera leaf gel. Molecules 13, 1599-1616.   DOI