• Title/Summary/Keyword: Panax species

Search Result 217, Processing Time 0.027 seconds

Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer)

  • Chelomina, Galina N.;Rozhkovan, Konstantin V.;Voronova, Anastasia N.;Burundukova, Olga L.;Muzarok, Tamara I.;Zhuravlev, Yuri N.
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.176-184
    • /
    • 2016
  • Background: Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods: The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results: In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440-640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion: This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine.

The effect of Glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity

  • Tian, Lei;Shi, Shaohua;Ma, Lina;Zhou, Xue;Luo, Shasha;Zhang, Jianfeng;Lu, Baohui;Tian, Chunjie
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Background: Glomus intraradices is a species of arbuscular mycorrhizal fungi that, as an obligate endomycorrhiza, can form mutually beneficial associations with plants. Panax ginseng is a popular traditional Chinese medicine; however, problems associated with ginseng planting, such as pesticide residues, reduce the ginseng quality. Methods: In this experiment, we studied the effect of inoculating G. intraradices on several physiological properties and microbial communities of ginseng. UV-Visible Spectrum method was used to detect physical properties. Denaturing gradient gel electrophoresis method was used to analyze microbial communities. Results: The results indicated that inoculation with G. intraradices can improve the colonization rate of lateral ginseng roots, increase the levels of monomeric and total ginsenosides, and improve root activity as well as polyphenol oxidase and catalase activities. We also studied the bacterial and fungal communities in ginseng rhizospheric soil. In our study, G. intraradices inoculation improved the abundance and Shannon diversity of bacteria, whereas fungi showed a reciprocal effect. Furthermore, we found that G. intraradices inoculation might increase some beneficial bacterial species and decreased pathogenic fungi in rhizospheric soil of ginseng. Conclusion: Our results showed that G. intraradices can benefit ginseng planting which may have some instructive and practical significance for planting ginseng in farmland.

Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer

  • Huo, Yue;Kang, Jong Pyo;Ahn, Jong Chan;Kim, Yeon Ju;Piao, Chun Hong;Yang, Dong Uk;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.218-227
    • /
    • 2021
  • Background: Panax ginseng is one of the most important medicinal plants and is usually harvested after 5 to 6 years of cultivation in Korea. Heavy metal (HM) exposure is a type of abiotic stress that can induce oxidative stress and decrease the quality of the ginseng crop. Siderophore-producing rhizobacteria (SPR) may be capable of bioremediating HM contamination. Methods: Several isolates from ginseng rhizosphere were evaluated by in vitro screening of their plant growth-promoting traits and HM resistance. Subsequently, in planta (pot tests) and in vitro (medium tests) were designed to investigate the SPR ability to reduce oxidative stress and enhance HM resistance in P. ginseng inoculated with the SPR candidate. Results: In vitro tests revealed that the siderophore-producing Mesorhizobium panacihumi DCY119T had higher HM resistance than the other tested isolates and was selected as the SPR candidate. In the planta experiments, 2-year-old ginseng seedlings exposed to 25 mL (500 mM) Fe solution had lower biomass and higher reactive oxygen species level than control seedlings. In contrast, seedlings treated with 108 CFU/mL DCY119T for 10 minutes had higher biomass and higher levels of antioxidant genes and nonenzymatic antioxidant chemicals than untreated seedlings. When Fe concentration in the medium was increased, DCY119T can produce siderophores and scavenge reactive oxygen species to reduce Fe toxicity in addition to providing indole-3-acetic acid to promote seedling growth, thereby conferring inoculated ginseng with HM resistance. Conclusions: It was confirmed that SPR DCY119T can potentially be used for bioremediation of HM contamination.

20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages

  • Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.293-299
    • /
    • 2013
  • 20S-dihydroprotopanaxadiol (2H-PPD) is a derivative of protopanaxadiol, a glycone of ginsenosides prepared from Panax ginseng. Although ginsenosides and acidic polysaccharides are known to be major active ingredients in ginseng, the immunopharmacological activities of their metabolites and derivatives have not been fully explored. In this study, we aimed to elucidate the regulatory action of 2H-PPD on the function of monocytes and macrophages in innate immune responses. 2H-PPD was able to boost the phagocytic uptake of fluorescein isothiocyanate-dextran in macrophages and enhance the generation of radicals (reactive oxygen species) in sodium nitroprusside-treated RAW264.7 cells. The surface levels of the costimulatory molecules such as CD80 and CD86 were also increased during 2H-PPD treatment. In addition, this compound boosted U937 cell-cell aggregation induced by CD29 and CD43 antibodies, but not by cell-extracellular matrix (fibronectin) adhesion. Similarly, the surface levels of CD29 and CD43 were increased by 2H-PPD exposure. Therefore, our results strongly suggest that 2H-PPD has the pharmacological capability to upregulate the functional role of macrophages/monocytes in innate immunity.

Red-Colored Phenomena of Ginseng(Panax ginseng C. A. Meyer) Root and Soil Environment (인삼근 적변현상과 근권 토양환경)

  • 양덕조;김용해
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.91-97
    • /
    • 1997
  • In order to elucidate the mechanism of red-colored phenomena(RCP) in ginseng(Panax ginseng C.A. Meyer), distribution of inorganic elements of ginseng root and its surrounding soil, and microflora in the soil were investigated. Red brown colored-substances were accumulated in the cell wall of epidermis at early stage of red-colored ginseng (RCG). Cell wall of the late stage of RCG was disordered and microorganisms were shown in the disordered cell wall. Al, Si and Fe contents among inorpanic elements in the epidermis of RCG were higher at two or three times than that of healthy ginseng. On the other hand, K content was higher at three times in healthy ginseng than that of RCG. Especially, Fe content was higher at three times in lateral roots of RCG than that of healthy ginseng. Total 21 strains of microorganisms were isolated on the 523 medium from surface soil, surrounding soil of both healthy and RCG, and RCG. Six strains of microorganisms among them were resistant to 2 mM Fe. Two species in Bacillus app. and Lactobacillus app. , and one species in Micrococcus sp. and Npisseria sp. respectively were identified. It seemed that RCP was closely related with the distribution and uptake of inorganic elements, was also correlated Fe-independent metabolism of microorganisms.

  • PDF

Genetic Diversity and Genetic Structures in Ginseng Landraces (Cultivars) by SRAP Analysis (SRAP 분석에 의한 중국 재배삼의 유전적 다양성)

  • Xu, Young Hua;Jin, Hui;Kim, Young-Chang;Bang, Kyong-Hwan;Cha, Seon-Woo;Zhang, Lian Xue
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.3
    • /
    • pp.180-185
    • /
    • 2010
  • We investigated genetic diversity among and within the populations of cultivated ginseng (Panax ginseng C. A. Meyer ) using SRAP profiles. A total of 24 ginseng plants were sampled from the three populations (two from China, one from Korea). Since all these populations are previously shown closely related to each other assister groups, we used Panax quinquefolium L. and wild ginseng as a reference species, which is not "within the sister group". All individuals from the three populations were screened with a total of 36 primer pairs with 26 primers generated from 328 SRAP bands of DNA gels. The mean gene diversity ($H_E$) was estimated to be 0.057 within populations (range 0.032-0.067), and 0.086 at the species level. The genetic differentiation (Gst=0.31) indicates that genetic variation apportioned 30% among populations and 70% within populations. Generally, the result of this study indicates that ginseng contains high molecular variation in its populations.

Inhibitory Effects of Panax ginseng C. A. Mayer Treated with High Temperature and High Pressure on Oxidative Stress (산화적 스트레스에 대한 고온고압처리 인삼의 억제 효과)

  • Yoon, Bo-Ra;Lee, Young-Jun;Hong, Hee-Do;Lee, Young-Chul;Kim, Young-Chan;Rhee, Young Kyoung;Kim, Kyung-Tack;Lee, Ok-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.800-806
    • /
    • 2012
  • Reactive oxygen species (ROS) are produced by oxidative stresses which cause various chronic diseases such as diabetes and obesity. Ginseng (Panax ginseng C.A. Mayer) has been reported to contain various biological activities such as anti-cancer, anti-diabetic, neuroprotective, radioprotective, anti-amnestic and anti-aging effects. In this study, we investigated the effects of Panax ginseng, treated with high temperatures and high pressures, on oxidative stress in C2C12 myoblasts and 3T3-L1 adipocytes. Oxidative stress was induced in the C2C12 cells through the introduction of $H_2O_2$ (1 mM), and cells were then treated with various ginseng preparations: dried white ginseng (DG), steamed ginseng (SG) and high temperature and high pressure treated ginseng (HG). In addition, 3T3-L1 preadipocytes were treated with various ginsengs for up to 8 days following standard induction of differentiation. Our results show that HG treatment significantly protected oxidative stress in both cell lines and enhanced gene expression of antioxidant enzymes. Therefore, in this study, we investigated the protective effects of ginseng on the oxidative stress of adipocytes and muscle cells.

Root Age-Dependent Changes in Arbuscular Mycorrhizal Fungal Communities Colonizing Roots of Panax ginseng

  • Kil, Yi-Jong;Eo, Ju-Kyeong;Lee, Eun-Hwa;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.416-421
    • /
    • 2014
  • In this study, we examined arbuscular mycorrhizal fungal (AMF) community structure colonizing field-cultivated ginseng roots according of different ages, such as 1- to 5-year-old plant, collected from Geumsan-gun, Korea. A total of seven AMF species namely, Funnelliformis caledonium, F. moseae, Gigaspora margarita, Paraglomus laccatum, P. occultum, Rhizophagus irregularis, and Scutellospora heterogama were identified from the roots using cloning, PCR-restriction fragment length polymorphism and sequence analysis of the large subunit region in rDNA. AMF species diversity in the ginseng roots decreased with the increase in root age because of the decreased species evenness. In addition, the community structures of AMF in the roots became more uniform. These results suggest that the age of ginseng affects mycorrhizal colonization and its community structure.

Analysis and Identification of Expressed Sequence Tags in Hairy Root Induced from Korean Ginseng (Panax ginseng C. A. Meyer)

  • Yang, Deok-Chun;In, Jun-Gyo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.2
    • /
    • pp.154-162
    • /
    • 2004
  • Hairy roots were induced from Korean ginseng (Panax ginseng C. A. Meyer) root explants and studied for their gene expression. A total of 3,000 ESTs (expressed sequence tags) from ginseng hairy root were determined and about 2,700 ESTs have a length of readable sequence, which result in 1,352 unique ESTs sequences. The 879 ESTs showed significant similarities to known nucleotide or amino acid sequences in other plant species, which were divided into eleven categories depending upon gene function. The remaining 473 sequences showed no significant matches, which are likely to be transcripts or to be matched to other organisms. The results indicated that the analysis of the ginseng hairy root ESTs by partial sequencing of random cDNA clones may be an efficient approach to isolate genes that are functional in ginseng root in a large scale. Our extensive EST analysis of genes expressed in ginseng hairy root not only contributes to the understanding of the dynamics of genome expression patterns in root organ but also adds data to the repertoire of all genomic genes.

Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea

  • Park, Sang-Un;Lim, Hyoun-Sub;Park, Kee-Choon;Park, Young-Hwan;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fungal endophytes were isolated from 12 ginseng roots. According to the sequence analysis of the ITS1-5.8S-ITS2, 38 fungal isolates were classified into 4 different fungal species, which were Phoma radicina, Fusarium oxysporum, Setophoma terrestris and Ascomycota sp. 2-RNK. The most dominant fungal endophyte was P. radicina in 3 cultivars. The percentage of dominant endophytes of P. radicina was 65.8%. The percentage of colonization frequency of P. radicina was 80%, 52.9%, and 75% in Chunpoong, Yunpoong, and Gumpoong, respectively. The second most dominant fungal endophyte was F. oxysporum. The diversity of the fungal endophytes was low and no ginseng cultivar specificity among endophytes was detected in this study. The identified endophytes can be potential fungi for the production of bioactive compounds and control against ginseng pathogens.