• 제목/요약/키워드: Panax leaves

검색결과 195건 처리시간 0.023초

Comparison of Ginsenoside and Phenolic Ingredient Contents in Hydroponically-cultivated Ginseng Leaves, Fruits, and Roots

  • Choi, Sang-Yoon;Cho, Chang-Won;Lee, Yeon-Mi;Kim, Sung-Soo;Lee, Sang-Hee;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • 제36권4호
    • /
    • pp.425-429
    • /
    • 2012
  • In this study, hydroponically-cultivated ginseng leaves, fruits, and roots were respectively extracted with ethanol. The contents of 12 ginsenosides and three phenolics in the extracts were quantitatively analyzed and the free radical scavenging activities were measured and compared. Hydroponically-cultivated ginseng leaves contained higher levels of gensenosides (Rg1, Rg2+Rh1, Rd, and Rg3) and p-coumaric acid than the other parts of the ginseng plants. The 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid radical scavenging activities of leaves were also the highest. Accordingly, hydroponically-grown ginseng leaves were shown to hold promise for use as an environmentally-friendly natural anti-oxidant.

인삼의 질병.병원균 및 방지책에 관하여 (Studies on Phytouthora disease of Panax ginseng C. A Meyer; its causal agent and possible control measures)

  • 오승환;박창석
    • Journal of Ginseng Research
    • /
    • 제4권2호
    • /
    • pp.186-193
    • /
    • 1980
  • The causal organism of Phytophthora disease on Panax ginseng Meyer in Korea was isolated and identified as Phytophthora cactorum. It's pathogenicity, etiology, and possible control measures were investigated. Disease symptoms on various parts of ginseng plants were also described The fungus caused seedling and mature plant blight and root rot. Oospores were easily formed on potato dextrose agar and corn meal agar. Oospores, however, were not formed in the diseased root tissues but did in the in footed shoots such as leaves, petioles, and stems and in the inoculated berries.

  • PDF

Identification of Phenolic Compounds and Quantification of Their Antioxidant Activities in Roasted Wild Ginseng (Panax ginseng C.A. Meyer) Leaves

  • Seog, Ho-Moon;Jung, Chang-Hwa;Choi, In-Wook;Park, Yong-Kon;Cho, Hong-Yon
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.349-354
    • /
    • 2007
  • The objectives of this study were to systemically identify phenolic compounds in roasted wild ginseng (Panax ginseng C.A. Meyer) leaves and investigate their radical scavenging activities. Seven phenolic compounds were identified by NMR (H, C, COSY, HMQC, HMBC) and mass (EI-MS, FAB-MS) analyses: 5-caffeoylquinic acid, kaempferol, quercetin, 3,4-dihydroxy-benzoic acid, 4-hydroxy-benzoic acid, 3-(3,4-dihydroxyphenyl)-2-propenoic acid, and 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid. Their concentrations ranged from 0.4 (3,4-dihydroxy-benzoic acid) to 7.5 mg (kaempferol) per 100 g of roasted leaves. Among these compounds, 5-caffeoylquinic acid, kaempferol, and quercetin were found exclusively in the leaf portions of the ginseng plants. When their antioxidant activities were measured by DPPH and superoxide anion radical scavenging activity, quercetin, and kaempferol were most effective.

고려인삼(Panax ginseng C.A. Meyer)의 비전분성 다당류에 관한 연구 1. Dietary fibre, hemicellulose, Cellulose, lignin 및 Pectin 함량과 조성 (Studies on the Nonstarchy Polysaccharides of Korean Ginseng, Punux ginseng C. A. Meyer 1. Cotent and Composition of dietary fober, hemicellulose, cellulose, lignin and pectin.)

  • 민경천;조재순
    • Journal of Ginseng Research
    • /
    • 제8권2호
    • /
    • pp.91-104
    • /
    • 1984
  • This study was conducted to investigate the characteristics of nonstarchy polysaccharides in Korean ginseng, (Panax ginseng C.A. Meyer). The results obtained are as follows. 1. The total sugar content of ginseng roots were decreased with increasing the cultural period. On the other hand, the crude fiber content was increased with that of the ginseng leaves or stems. But the crude fiber in root was much less than that of leaves and stems. 2. The dietary fiber content of ginseng root on 5 years old was 14.20% as neutral detergent fiber, 9.08% as acid detergent fiber, hemicellulose 5.12%, cellulose 7.98% and lignin of 1.10%, respectively. 3. Much more pectin was found in ginseng roots which was cultivated for shooter Period. And it was contained much more in the root than in the leaves and stems. 4. ginseng hemicellulose content in root was 5% to 10%. It was decreased with increasing: cultivated period. Hemicellulose was constituted of xylose, arabinose, glucose, rhamnose and xylose of these sugars was the predominant. 5. X-ray diffraction Pattern of ginseng cellulose showed maximum intensity at tile interplanar angle of 4.1$^{\circ}$.

  • PDF

PHYSIOLOGICAL RESPONSE OF PANAX GINSENG TO LIGHT

  • Park Hoon
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1980년도 학술대회지
    • /
    • pp.151-170
    • /
    • 1980
  • Physiological response of Panax ginseng var. atropurpureacaulo (purple stem variety, Pg) to light was reviewed through old literatures and recent experiments. Canopy structure, growth, pigment, leaf anatomy, disease occurence, transpiration, photosynthesis (PS), leaf saponin, photoperiodism and nutrient uptake were concerned. P. ginseng var. xanthocarpus (yellow berry variety, Px) and Panax quinquefolius(Pq) were compared with Pg if possible. Compensation point(Cp) increased with increase of light and ranged from 110 to 150 at $20^{\circ}C$ but from 140 to 220 at $30^{\circ}C$ with 4 to 15 Klux indicating occurence of light and temperature-dependent high photorespiration. Characteristics of Korea ginseng to hate high temperature was well accordance with an observation 2000 years ago. Korea ginseng showed lower Cp and appeared to be more tolerant to high light intensity and temperature than American sheng although the latter showed greater PS, stomata frequency and conductance, chlorophyll and carotenoids. Px showed lower PS than Pg probably due to higher Cp. Total leaf saponin was higher in leaves grown under high light. Ratio or diol saponin and triol saponin(PT/PD) decreased with increase of light intensity during growing mainly due to decrease of ginsenoside $Rg_1$ but increase of ginsenoside Rd. Leaves of Pg and Px had $Rg_1$ but no $Rb_3$ which was only found as much as $20\%$ of total in Pq leaves, and decreased with increase of light intensity. Re increased in Pg and Px but decreased in Pq with increase of light. PT/PD in leaf ranged 1.0-1.5 in Pg and Px but around 0.5 in Pq. Korea ginseng has Yang characteristics(tolerant to high light and temperature), cultured under Eum(shade) condition and long been used for Yang efficacy (to build up energy) while Pq was quite contrary. Traditional low light $intensity(3-8\%)$ for Korea ginseng culture appeared to be strongly related to historical unique quality. Effect of light quality and photoperiodism was not well known. Experiences are long but scientific knowledge is short for production and quality assessment of ginseng. Recent scientific knowledge of ginseng should learn wisdom from old experiences.

  • PDF

Preparative separation of minor saponins from Panax notoginseng leaves using biotransformation, macroporous resins, and preparative high-performance liquid chromatography

  • Liu, Fang;Ma, Ni;Xia, Fang-Bo;Li, Peng;He, Chengwei;Wu, Zhenqiang;Wan, Jian-Bo
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.105-115
    • /
    • 2019
  • Background: Ginsenosides with less sugar moieties may exhibit the better adsorptive capacity and more pharmacological activities. Methods: An efficient method for the separation of four minor saponins, including gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, from Panax notoginseng leaves (PNL) was established using biotransformation, macroporous resins, and subsequent preparative high-performance liquid chromatography. Results: The dried PNL powder was immersed in the distilled water at $50^{\circ}C$ for 30 min for converting the major saponins, ginsenosides Rb1, Rc, Rb2, and Rb3, to minor saponins, gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, respectively, by the enzymes present in PNL. The adsorption characteristics of these minor saponins on five types of macroporous resins, D-101, DA-201, DM-301, X-5, and S-8, were evaluated and compared. Among them, D-101 was selected due to the best adsorption and desorption properties. Under the optimized conditions, the fraction containing the four target saponins was separated by D-101 resin. Subsequently, the target minor saponins were individually separated and purified by preparative high-performance liquid chromatography with a reversed-phase column. Conclusion: Our study provides a simple and efficient method for the preparation of these four minor saponins from PNL, which will be potential for industrial applications.

Metabolomic understanding of intrinsic physiology in Panax ginseng during whole growing seasons

  • Lee, Hyo-Jung;Jeong, Jaesik;Alves, Alexessander Couto;Han, Sung-Tai;In, Gyo;Kim, Eun-Hee;Jeong, Woo-Sik;Hong, Young-Shick
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.654-665
    • /
    • 2019
  • Background: Panax ginseng Meyer has widely been used as a traditional herbal medicine because of its diverse health benefits. Amounts of ginseng compounds, mainly ginsenosides, vary according to seasons, varieties, geographical regions, and age of ginseng plants. However, no study has comprehensively determined perturbations of various metabolites in ginseng plants including roots and leaves as they grow. Methods: Nuclear magnetic resonance ($^1H$ NMR)-based metabolomics was applied to better understand the metabolic physiology of ginseng plants and their association with climate through global profiling of ginseng metabolites in roots and leaves during whole growing periods. Results: The results revealed that all metabolites including carbohydrates, amino acids, organic acids, and ginsenosides in ginseng roots and leaves were clearly dependent on growing seasons from March to October. In particular, ginsenosides, arginine, sterols, fatty acids, and uracil diphosphate glucose-sugars were markedly synthesized from March until May, together with accelerated sucrose catabolism, possibly associated with climatic changes such as sun exposure time and rainfall. Conclusion: This study highlights the intrinsic metabolic characteristics of ginseng plants and their associations with climate changes during their growth. It provides important information not only for better understanding of the metabolic phenotype of ginseng but also for quality improvement of ginseng through modification of cultivation.

인삼의 종 및 품종간 광합성 특성비교 (Comparison of Photosynthetic Rates among Panax Species and Cultivars)

  • 이성식;천선용;이종화
    • 한국작물학회지
    • /
    • 제32권2호
    • /
    • pp.157-162
    • /
    • 1987
  • 인삼의 종 및 품종간 생리적 특성을 알기 위하여 볏짚 해가림하의 동일한 환경조건하에서 재배된 Panax ginseng C. A. Meyer 인 자경종, 황숙종, 미마끼, 소련재배인삼 그리고 Panax quinque folium L.인 미국삼을 광도, 온도, 시기별 광합성능력과 기공, 엽록소, 비엽중 및 지상하부 형질들을 조사하였던 바 그 결과를 요약하면 다음과 같다. 1. 광포화점은 자경종, 황숙종, 미마끼 및 미국삼이 15,000 lux 내외였고 소련재배인삼은 10,000 lux 내외였 다. 2. 광합성 최적 온도는 자경종, 황숙종, 미국삼 및 미마끼가 20 $^{\circ}C$ 내외였으나 소련재배인삼은 15$^{\circ}C$ 내외였다. 3. 광합성속도(생육기)는 미국삼이 7.8 mg($CO_2$/dm$^2$/h) 정도로 가장 높았고, 자엽종. 황숙종, 미마끼가 약 6~7mg($CO_2$/dm$^2$/h)였으며 소련재배인삼은 5mg($CO_2$/dm$^2$/h) 정도로 가장 낮았다. 4. 암호흡속도는 온도가 높아짐에 따라 달라지는 영향이었으나 종 및 품종간에는 비슷하였다. 5. 단위 엽면적당 기공수는 미국삼이 가장 많았고 소련재배인삼이 가장 적었으며 기공의 길이는 그 반대였다. 6. 엽록소함량은 미국삼이 가장 많았으며, 비엽중은 미마끼가 가장 높았다. 7. 2년근시 근중은 미국삼이 가장 무거웠고 소련재단인삼이 가장 가벼웠으나, 엽수는 자엽종, 황숙종, 미마끼가 많았고, 미국삼, 소련재배인삼 순으로 적었다. 8. 6년근주 근중은 자엽종, 황숙종, 미마끼가 가장 무거웠고. 미국삼 소련재배인삼 순으로 가벼웠으며, 엽수도 같은 경향이었다.

  • PDF

인삼, 산약, 한약 부산물의 급여가 재래종 계육의 이화학적 특성에 미치는 영향 (Effects of Dietary Panax ginseng Leaves, Dioscorea japonica Hulls and Oriental Medicine Refuse on Physico-Chemical Properties of Korean Native Chicken Meat)

  • 김병기;황인업;김영직;황영현;배만종;김수민;안종호
    • 한국축산식품학회지
    • /
    • 제22권2호
    • /
    • pp.122-129
    • /
    • 2002
  • 본 연구는 경상북도 축산기술연구소에서 보유하고 있는 재래닭 160수를 공시하여 인삼 부산물(잎 줄기), 산약 부산물(박피후 건조껍질), 한약(달인 후 찌꺼기) 부산물을 각각 5%씩 기본사료에 첨가급여하였다. 시험기간은 부화후 8주령에 시작하여 20주령에 종료하였으며, 재래종 계육의 육질에 미치는 영향을 알아보기 위해 이화학적 특성을 조사하였다.

인삼 지상부의 채취시기에 따른 사포닌조성 비교 (Changes of Saponin Contents of Leaves, Stems and Flower-buds of Panax ginseng C. A. Meyer by Harvesting Days)

  • 최재을;이상국;한용환;이기택
    • 한국약용작물학회지
    • /
    • 제17권4호
    • /
    • pp.251-256
    • /
    • 2009
  • The parts of leaves, flowers and stems in ginseng were obtained for analyzing the component of saponin on 15th April, 25th April, 5th May, 25th May, which were considered as ginseng foliation stage. The total saponin content of the leaves were 97.29, 66.42, 67.61, 36.24 mg/g, respectively, in which the content of Re, $Rb_1$ and Rd were more than 2/3 amount of total saponin. Especially, the saponin content of leaves decreased according to the sequential collection days, in which the similar results were observed from the flowers and stems of ginseng. The total saponin content of the flowers and stems were 141.09,143.84,139.25,133.47 and 13.32, 9.85, 8.00, 4.65 mg/g, respectively. Among them, the content of Re, Rd and $Rb_2$ in flowers were more than 2/3 while the content of Re, $Rg_1$ and Rd in stems showed more than 9/10 amount of total saponin. The total saponin content of individual leaf were 19.46, 28.56, 58.82 and 169.24 mg/plant, 2.53, 2.76, 5.20 and 12.32 mg/plant in stems, and 14.11, 30.21, 37.60 and 73.41 mg/plant in flowers. Therefore, the total saponin content of aboveground parts in ginseng were leaves > flowers > stems.