• 제목/요약/키워드: Panax ginseng Cultivar

검색결과 42건 처리시간 0.018초

Development of a single-nucleotide-polymorphism marker for specific authentication of Korean ginseng (Panax ginseng Meyer) new cultivar "G-1"

  • Yang, Dong-Uk;Kim, Min-Kyeoung;Mohanan, Padmanaban;Mathiyalagan, Ramya;Seo, Kwang-Hoon;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제41권1호
    • /
    • pp.31-35
    • /
    • 2017
  • Background: Korean ginseng (Panax ginseng) is a well-known medicinal plant of Oriental medicine that is still in practice today. Until now, a total of 11 Korean ginseng cultivars with unique features to Korean ginseng have been developed based on the pure-line-selection method. Among them, a new cultivar namely G-1 with different agricultural traits related to yield and content of ginsenosides, was developed in 2012. Methods: The aim of this study was to distinguish the new ginseng cultivar G-1 by identifying the unique single-nucleotide polymorphism (SNP) at its 45S ribosomal DNA and Panax quinquefolius region than other Korean ginseng cultivars using multiplex amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR). Results: A SNP at position of 45S ribosomal DNA region between G-1, P. quinquefolius, and the other Korean ginseng cultivars was identified. By designing modified allele-specific primers based on this site, we could specifically identified G-1 and P. quinquefolius via multiplex PCR. The unique primer for the SNP yielded an amplicon of size 449 bp in G-1 cultivar and P. quinquefolius. This study presents an effective method for the genetic identification of the G-1 cultivar and P. quinquefolius. Conclusion: The results from our study shows that this SNP-based approach to identify the G-1 cultivar will be a good way to distinguish accurately the G-1 cultivar and P. quinquefolius from other Korean ginseng cultivars using a SNP at 45S ribosomal DNA region.

Discrimination of Korean ginseng (Panax ginseng Meyer) cultivar Chunpoong and American ginseng (Panax quinquefolius) using the auxin repressed protein gene

  • Kim, Jong-Hak;Kim, Min-Kyeoung;Wang, Hongtao;Lee, Hee-Nyeong;Jin, Chi-Gyu;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.395-399
    • /
    • 2016
  • Background: Korean ginseng (Panax ginseng) is one of the most important medicinal plants in the Orient. Among nine cultivars of P. ginseng, Chunpoong commands a much greater market value and has been planted widely in Korea. Chunpoong has superior quality "Chunsam" ($1^{st}$ grade ginseng) when made into red ginseng. Methods: A rapid and reliable method for discriminating the Chunpoong cultivar was developed by exploiting a single nucleotide polymorphism (SNP) in the auxin repressed protein gene of nine Korean ginseng cultivars using specific primers. Results: An SNP was detected between Chunpoong and other cultivars, and modified allele-specific primers were designed from this SNP site to specifically identify the Chunpoong cultivar and P. quinquefolius via multiplex polymerase chain reaction (PCR). Conclusion: These results suggest that great impact to prevent authentication of precise Chunpoong and other cultivars using the auxin repressed protein gene. We therefore present an effective method for the authentication of the Chunpoong cultivar of P. ginseng and P. quinquefolius.

Molecular discrimination of Panax ginseng cultivar K-1 using pathogenesis-related protein 5 gene

  • Wang, Hongtao;Xu, Fengjiao;Wang, Xinqi;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.482-487
    • /
    • 2019
  • Background: The mixed-cultivation of different Panax ginseng cultivars can cause adverse effects on stability of yield and quality. K-1 is a superior cultivar with good root shape and stronger disease resistance. DNA markers mined from functional genes are clearly desirable for K-1, as they may associate with major traits and can be used for marker-assisted selection to maintain the high quality of Korean ginseng. Methods: Five genes encoding pathogenesis-related (PR) proteins of P. ginseng were amplified and compared for polymorphism mining. Primary, secondary, and tertiary structures of PR5 protein were analyzed by ExPASy-ProtParam, PSSpred, and I-TASSER methods, respectively. A coding single nucleotide polymorphism (SNP)-based specific primer was designed for K-1 by introducing a destabilizing mismatch within the 3' end. Allele-specific polymerase chain reaction (PCR) and real-time allele-specific PCR assays were conducted for molecular discrimination of K-1 from other cultivars and landraces. Results: A coding SNP leading to the modification of amino acid residue from aspartic acid to asparagine was exploited in PR5 gene of K-1 cultivar. Bioinformatics analysis showed that the modification of amino acid residue changed the secondary and tertiary structures of the PR5 protein. Primer KSR was designed for specific discrimination of K-1 from other ginseng cultivars and landraces. The developed real-time allele-specific PCR assay enabled easier automation and accurate genotyping of K-1 from a large number of ginseng samples. Conclusion: The SNP marker and the developed real-time allele-specific PCR assay will be useful not only for marker-assisted selection of K-1 cultivar but also for quality control in breeding and seed programs of P. ginseng.

Development of Reproducible EST-derived SSR Markers and Assessment of Genetic Diversity in Panax ginseng Cultivars and Related Species

  • Choi, Hong-Il;Kim, Nam-Hoon;Kim, Jun-Ha;Choi, Beom-Soon;Ahn, In-Ok;Lee, Joon-Soo;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제35권4호
    • /
    • pp.399-412
    • /
    • 2011
  • Little is known about the genetics or genomics of Panax ginseng. In this study, we developed 70 expressed sequence tagderived polymorphic simple sequence repeat markers by trials of 140 primer pairs. All of the 70 markers showed reproducible polymorphism among four Panax species and 19 of them were polymorphic in six P. ginseng cultivars. These markers segregated 1:2:1 manner of Mendelian inheritance in an $F_2$ population of a cross between two P. ginseng cultivars, 'Yunpoong' and 'Chunpoong', indicating that these are reproducible and inheritable mappable markers. A phylogenetic analysis using the genotype data showed three distinctive groups: a P. ginseng-P. japonicus clade, P. notoginseng and P. quinquefolius, with similarity coefficients of 0.70. P. japonicus was intermingled with P. ginseng cultivars, indicating that both species have similar genetic backgrounds. P. ginseng cultivars were subdivided into three minor groups: an independent cultivar 'Chunpoong', a subgroup with three accessions including two cultivars, 'Gumpoong' and 'Yunpoong' and one landrace 'Hwangsook' and another subgroup with two accessions including one cultivar, 'Gopoong' and one landrace 'Jakyung'. Each primer pair produced 1 to 4 bands, indicating that the ginseng genome has a highly replicated paleopolyploid genome structure.

Comparison of ITS(Internal Transcribed Spacer) and 5.8S rDNA Sequences among varieties and Cultivars in Panax ginseng

  • Yang, Deok-Chun;Yang, Key-Jin;Yoon, Eui-Soo
    • Journal of Photoscience
    • /
    • 제8권2호
    • /
    • pp.55-60
    • /
    • 2001
  • Ginseng (Panax genus) is one of the most medicinally important genera and consists of highly regarded medicines. Among the species of Panax, the ginseng species is widely known to have most medicinal quality. P. ginseng has 3 varieties, Jakyung, Chunggyung and Hwangsook, discovered in nature with different colors of stem and fruit, Jakyung has two cultivars, Yunpoong and Chunpoong. Rigorous phylogenetic analysis of these varieties and cultivars has been conducted with sequencing of rDNA region. The sequences of ITS1, ITS2 of every varieties and cultivars within P. ginseng were identical. The sequence of 5.8S rDNAs of Hwangsook variety were different from the sequences of 5.8S rDNAs of others by only one base pair at nucleotide position 14. In phylogenetic analysis and predicted RNA secondary structure study, it is assumed that evolution has proceeded from Hwangsook to other varieties. recently.

  • PDF

Origin and evolution of Korean ginseng revealed by genome sequence

  • Cho, Woohyeon;Shim, Hyeonah;Yang, Tae-Jin
    • 인삼문화
    • /
    • 제3권
    • /
    • pp.1-10
    • /
    • 2021
  • 인삼은 세계에서 가장 중요한 약용식물 중 하나이다. 본 연구실에서는 국립종자원에 최초로 등록된 인삼 품종 '천풍'을 이용하여 대략 3Gbp의 완성도 높은 유전체 서열과 60,000여개의 유전자를 동정하여 공개하였다. 인삼속 근연종들과의 비교유전체연구를 통해 종의 분화 시기 등을 추정하였고, 이를 통해 고려인삼의 기원과 두 번의 대륙이동을 통한 인삼속의 진화와 분포모델을 확립하였다. 인삼속 18종 중 2종 (고려인삼, 화기삼)은 24쌍의 염색체를 가지는 사배체 식물이며 나머지 16종은 12쌍의 염색체를 가지는 이배체 식물이다. 인삼속과 두릅나무속은 두릅나무과에 속하는 가장 가까운 식물로서 약 8백만년 전에 분화하였다. 인삼속은 약 6백만년 전 베트남 등의 동남아시아에서 러시아와 같은 동북아시아에 이르는 지역의 깊은 숲 속 서늘한 기후와 숲 속의 음지조건에 적응하며 음지식물로 진화했다. 그 기간은 빙하기와 간빙기가 반복되는 시기로 월동 능력이 없는 이배체 인삼종은 대부분 동북아시아 지역에서 멸종하였고 이 과정에 이배체간 종간 교잡종인 이질사배체가 약 2백만년전 만들어졌으며 한반도를 위시한 동북아시아를 중심으로 월동능력을 가진 고려인삼이 태동되었다고 추정된다. 북미에 분포하는 화기삼은 동북아시아 전역에 분포하던 고려인삼이 약 1백만년전에 빙하의 이동과 더불어 대륙간 이주를 통해 새로운 생태 환경에 적응하면서 분화되었다고 판단된다. 반면 대부분의 이배체 인삼종은 고온을 견디지 못하고 월동능력도 없어 동남아시아 지역에서 1,600미터 이상의 고산 지역으로 쫓겨 올라가 연중 서늘한 기후에서 생존하고 있다. 유전체 해독 정보는 인삼의 기원과 진화기작을 추정하는 학문적 성과 뿐 아니라 인삼산업을 보호하고 우수 인삼을 개발하기 위한 실용적인 분자육종 수단에도 매우 효율적으로 활용될 수 있다.

EST-SSR Marker Sets for Practical Authentication of All Nine Registered Ginseng Cultivars in Korea

  • Kim, Nam-Hoon;Choi, Hong-Il;Ahn, In-Ok;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제36권3호
    • /
    • pp.298-307
    • /
    • 2012
  • Panax ginseng has been cultivated for centuries, and nine commercial cultivars have been registered in Korea. However, these nine elite cultivars are grown in less than 10% of ginseng fields, and there is no clear authentication system for each cultivar even though their values are higher than those of local landraces. Here, we have developed 19 microsatellite markers using expressed gene sequences and established an authentication system for all nine cultivars. Five cultivars, 'Chunpoong', 'Sunpoong', 'Gumpoong', 'Sunun', and 'Sunone', can each be identified by one cultivar-unique allele, gm47n-a, gm47n-c, gm104-a, gm184-a (or gm129-a), and gm175-c, respectively. 'Yunpoong' can be identified by the co-appearance of gm47n-b and gm129-c. 'Sunhyang' can be distinguished from the other eight cultivars by the co-appearance of gm47n-b, gm129-b, and gm175-a. The two other cultivars, 'Gopoong' and 'Cheongsun', can be identified by their specific combinations of five marker alleles. This marker set was successfully utilized to identify the cultivars among 70 ginseng individuals and to select true F1 hybrid plants between two cultivars. We further analyzed the homogeneity of each cultivar and phylogenetic relationships among cultivars using these markers. This marker system will be useful to the seed industry and for breeding of ginseng.

Mitochondrial nad 7 intron 4 region을 통한 분자생물학적 고려인삼품종 "천풍"검증 (Molecular identification of Korean ginseng cultivar "Chunpoong" using the mitochondrial nad 7 intron 4 region)

  • 왕홍도;김민경;권우생;양덕춘
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 춘계학술발표회
    • /
    • pp.15-15
    • /
    • 2010
  • Koran ginseng(Pnax ginseng) is one of the most important medicinal plants in Orient. Among the nine cultivars of Korea ginseng, Chunpoong commands a much greater market value and has been planted widely. A rapid and reliable method for discriminating the Chunpoong cultivar was developed by exploiting a single nucleotide polymorphism (SNP) in the mitochondrial nad7 intron 4 region of nine Korea ginseng cultivars using universal primers. A SNP was detected between Chunpoong and other cultivars and modified allele-specific primers were designed from this SNP site to effective method for the geneic identification of the Chunpoong cultivar of ginseng.

  • PDF

Cytohistological study of the leaf structures of Panax ginseng Meyer and Panax quinquefolius L.

  • Lee, Ok Ran;Nguyen, Ngoc Quy;Lee, Kwang Ho;Kim, Young Chang;Seo, Jiho
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.463-468
    • /
    • 2017
  • Background: Both Panax ginseng Meyer and Panax quinquefolius are obligate shade-loving plants whose natural habitats are broadleaved forests of Eastern Asia and North America. Panax species are easily damaged by photoinhibition when they are exposed to high temperatures or insufficient shade. In this study, a cytohistological study of the leaf structures of two of the most well-known Panax species was performed to better understand the physiological processes that limit photosynthesis. Methods: Leaves of ginseng plants grown in soil and hydroponic culture were sectioned for analysis. Leaf structures of both Panax species were observed using a light microscope, scanning electron microscope, and transmission electron microscope. Results: The mesostructure of both P. ginseng and P. quinquefolius frequently had one layer of non-cylindrical palisade cells and three or four layers of spongy parenchymal cells. P. quinquefolius contained a similar number of stomata in the abaxial leaf surface but more tightly appressed enlarged grana stacks than P. ginseng contained. The adaxial surface of the epidermis in P. quinquefolius showed cuticle ridges with a pattern similar to that of P. ginseng. Conclusion: The anatomical leaf structure of both P. ginseng and P. quinquefolius shows that they are typical shade-loving sciophytes. Slight differences in chloroplast structure suggests that the two different species can be authenticated using transmission electron microscopy images, and light-resistant cultivar breeding can be performed via controlling photosynthesis efficiency.

Potable handheld gas chromatograph(PHGC)를 이용한 인삼속(Panax species) 식물들의 향기패턴 분석 (Analysis of Aroma Pattern of Panax Species by Potable Handheld Gas Chromatograph)

  • 이부용;양영민;이옥환;김경임
    • 한국식품과학회지
    • /
    • 제34권5호
    • /
    • pp.862-866
    • /
    • 2002
  • 분말상태의 인삼속 식물들의 품종 및 원산지를 판별하기 위하여 SAW 센서가 내장된 PHGC를 이용하여 향기 패턴을 분석하였다. 한국 백삼을 1로 기준할 때 전체적인 Rt에 대한 frequency pattern의 면적비는 화기삼 $0.248{\sim}0.871$, 전칠삼 $0.030{\sim}0.674$, 중국산 백삼 $0.005{\sim}0.212$ 범위로 나타났다. 분명한 차이를 나타내는 몇 개의 특정 향기성분의 면적비를 보면 $Rt_{20.02}$에서 한국산 백삼 1일 때, 중국산 백삼 0.212, 화기삼 0.343, 전칠삼 0.065이었다. 또한 $Rt_{21.70}$$Rt_{24.90}$에서 검출되는 향기성분의 면적비도 품종간의 차이가 뚜렷하였다. 한국산 백삼과 중국산 백삼에서 검출된 Rt_26.15 향기성분의 면적비는 각각 1과 0.185로 나타나 원산지간의 차이도 분명히 나타났다. $Rt_{26.15}$의 향기성분은 화기삼과 전칠삼에서는 검출되지 않았다. Frequency pattern, derivative pattern을 Vapor $print^{TM}$을 사용하여 도형화하여 비교한 결과 한국 백삼(Korean Panax ginseng C.A. Meyer), 화기삼(미국삼, 서양삼, Panax quinquefolium L.), 전칠삼(Panax notoginseng F.H. Chen), 중국산 백삼(Chinese Panax ginseng)은 서로 다른 패턴을 보여주어 품종간의 차이는 물론 원산지의 차이도 뚜렷하게 나타났다.