• Title/Summary/Keyword: Palm module

Search Result 8, Processing Time 0.025 seconds

Palm-Size-Integrated Microwave Power Module at 1.35-GHz for an Atmospheric Pressure Plasma for biomedical applications

  • Myung, C.W.;Kwon, H.C.;Kim, H.Y.;Won, I.H.;Kang, S.K.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.498-498
    • /
    • 2013
  • Atmospheric Pressure Plasmas have pioneered a new field of plasma for biomedical application bridging plasma physics and biology. Biological and medical applications of plasmas have attracted considerable attention due to promising applications in medicine such as electro-surgery, dentistry, skin care and sterilization of heat-sensitive medical instruments [1]. Traditional approaches using electronic devices have limits in heating, high voltage shock, and high current shock for patients. It is a great demand for plasma medical industrial acceptance that the plasma generation device should be compact, inexpensive, and safe for patients. Microwave-excited micro-plasma has the highest feasibility compared with other types of plasma sources since it has the advantages of low power, low voltage, safety from high-voltage shock, electromagnetic compatibility, and long lifetime due to the low energy of striking ions [2]. Recent experiment [2] shows three-log reduction within 180-s treatment of S. mutans with a low-power palm-size microwave power module for biomedical application. Experiments using microwave plasma are discussed. This low-power palm-size microwave power module board includes a power amplifier (PA) chip, a phase locked loop (PLL) chip, and an impedance matching network. As it has been a success, more compact-size module is needed for the portability of microwave devices and for the various medical applications of microwave plasma source. For the plasma generator, a 1.35-GHz coaxial transmission line resonator (CTLR) [3] is used. The way of reducing the size and enhancing the performances of the module is examined.

  • PDF

Design and Control of Anthropomorphic Robot hand (인간형 다지 다관절 로봇 핸드의 개발)

  • Chun, Joo-Young;Choi, Byung-June;Chae, Han-Sang;Moon, Hyung-Pil;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.102-109
    • /
    • 2010
  • In this study, an anthropomorphic robot Hand, called "SKKU Hand III" is presented. The hand has thirteen DOF(Degree-Of-Freedom) and is designed based on the skeletal structure of the human hand. Each finger module(except thumb module) has three DOF and four joints with a saddle joint mechanism which has two DOF at the base joint. Two distal joints of the finger module are mechanically coupled by a timing belt and pulleys. The thumb module is composed of a finger module and an additional actuator, which makes it possible to realize the opposition between the thumb and the other fingers. In addition, the palm DOF of the human hand is mimicked with a spatial link mechanism between the index finger and the thumb. Thus, it can grasp objects more stably and more strongly. For the modularization of the robotic hand all the driving circuits are embedded in the hand, and only the communication lines supporting CAN protocol with DC power cable are given as an interface. Therefore, it is possible to apply it to any robot system the interface. To validate the feasibility of the SKKU Hand III, a series of the representative grasp experiments such as power, precision, intermediate grasp etc. are carried out with the object around us and its operation is demonstrated.

Development of FSR Sensor Suits Controlling Walking Assist System for Paraplegic Patients (하반신 마비환자의 보행보조시스템 제어를 위한 저항 센서 슈트 개발)

  • Jang, E.H.;Chi, S.Y.;Lee, J.Y.;Cho, Y.J.;Chun, B.T.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.269-274
    • /
    • 2010
  • The purpose of this study was to develop the FSR sensor suit that controls walking assist device for paraplegic patients. The FSR sensor suit was to detect user's intent and patterns for walking by measuring pressure on the palm and the sole of user's foot. It consisted of four modules: sensing pressure from palm, changing modes and detecting pressure on the palm/at the wrist, sensing pressure from the soles of user's foot, and host module that transmit FSR data obtained from sensing modules to PC. Sensing modules were connected to sensing pads which detect analog signals obtained from the palm or the sole of foot. These collect signals from the target regions, convert analog signals into digital signals, and transmit the final signals to host module via zigbee modules. Finally, host modules transmit the signals to host PC via zigbee modules. The study findings showed that forces measured at the palm when using a stick reflected user's intent to walk and forces at the sole of the user's foot revealed signals detecting walking state.

Development of a 16 DOF Anthropomorphic Robot Hand with Back-Drivability Joint for Stable Grasping (안정 파지를 위한 16자유도 역구동 관절을 가지는 인간형 로봇 손 개발)

  • Yang, Hyun-Dae;Park, Sung-Woo;Park, Jae-Han;Bae, Ji-Hun;Baeg, Moon-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.220-229
    • /
    • 2011
  • This paper focuses on a development of an anthropomorphic robot hand. Human hand is able to dexterously grasp and manipulate various objects with not accurate and sufficient, but inaccurate and scarce information of target objects. In order to realize the ability of human hand, we develop a robot hand and introduce a control scheme for stable grasping by using only kinematic information. The developed anthropomorphic robot hand, KITECH Hand, has one thumb and three fingers. Each of them has 4 DOF and a soft hemispherical finger tip for flexible opposition and rolling on object surfaces. In addition to a thumb and finger, it has a palm module composed the non-slip pad to prevent slip phenomena between the object and palm. The introduced control scheme is a quitely simple based on the principle of virtual work, which consists of transposed Jacobian, joint angular position, and velocity obtained by joint angle measurements. During interaction between the robot hand and an object, the developed robot hand shows compliant grasping motions by the back-drivable characteristics of equipped actuator modules. To validate the feasibility of the developed robot hand and introduced control scheme, collective experiments are carried out with the developed robot hand, KITECH Hand.

Development of a Portable Device based on PDA for Vibration Signal Analysis (PDA 기반 포터블 진동 신호 분석기 개발)

  • 김동준;박광호;기창두
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.179-184
    • /
    • 2002
  • In this study, we developed a portable device which can monitor and analyze vibration signals from machines. This system consists a PDA loading the program for vibration analysis and A/D board for vibration acquisition. A PDA is smaller than the palm of the hand, but it has a powerful computing ability as much as an IBM compatible PC with a Pentium 100MHz CPU. The A/D board developed in this study supports LAN interface using TCP/IP communication protocol. The application program for vibration analysis includes signal processing module, fault diagnosis module, data store module, and plot display module. MS visual embedded C++ 3.0 was used to developed the program.

A Haptic Navigation System for Visually Impaired Persons (시각장애인을 위한 햅틱 네비게이션 시스템)

  • Kim, Sang-Youn;Cho, Seong-Man
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.133-143
    • /
    • 2011
  • This paper proposes a mobile navigation system which haptically presents the way to go to visually impaired persons. In order to convey the tactile information to the visually impaired persons, we develop a new tactile module with a solenoid, a permanent magnet and an elastic spring. Furthermore, we suggest 2D vibration flow which originates from one point and gradually propagates to other points on a surface of the haptic navigation system. The tactile module and the vibration flow method are incorporated into the proposed haptic navigation system and they stimulate the user's finger pad and palm, respectively. We conduct experiments to investigate that the proposed navigation system haptically provides the direction to the users. From the experimental results, we verify that the proposed system can generate enough tactile sensation to guide the direction to go in real-time.

Detection of Implicit Walking Intention for Walking-assistant Robot Based on Analysis of Bio/Kinesthetic Sensor Signals (보행보조로봇을 위한 다중 생체/역학 센서의 신호 분석 및 사용자 의도 감지)

  • Jang, Eun-Hye;Chun, Byung-Tae;Chi, Su-Young;Lee, Jae-Yeon;Cho, Young-Jo
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.294-301
    • /
    • 2010
  • In order to produce a convenient robot for the aged and the lower limb disabled, it is needed for the research detecting implicit walking intention and controlling robot by a user's intention. In this study, we developed sensor module system to control the walking- assist robot using FSR sensor and tilt sensor, and analyzed the signals being acquired from two sensors. The sensor module system consisted of the assist device control unit, communication unit by wire/wireless, information collection unit, information operation unit, and information processing PC which handles integrated processing of assist device control. The FSR sensors attached user's the palm and the soles of foot are sensing force/pressure signals from these areas and are used for detecting the walking intention and states. The tilt sensor acquires roll and pitch signal from area of vertebrae lumbales and reflects the pose of the upper limb. We could recognize the more detailed user's walking intention such as 'start walking', 'start of right or left foot forward', and 'stop walking' by the combination of FSR and tilt signals can recognize.

Development of Automatic Conversion System for Pipo Painting Image Based on Artificial Intelligence

  • Minku, Koo;Jiyong, Park;Hyunmoo, Lee;Giseop, Noh
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.33-45
    • /
    • 2023
  • This paper proposes an algorithm that automatically converts images into Pipo, painting images using OpenCV-based image processing technology. The existing "purity," "palm," "puzzling," and "painting," or Pipo, painting image production method relies on manual work, so customized production has the disadvantage of coming with a high price and a long production period. To resolve this problem, using the OpenCV library, we developed a technique that automatically converts an image into a Pipo painting image by designing a module that changes an image, like a picture; draws a line based on a sector boundary; and writes sector numbers inside the line. Through this, it is expected that the production cost of customized Pipo painting images will be lowered and that the production period will be shortened.