Browse > Article
http://dx.doi.org/10.4217/OPR.2011.33.3.211

Variations of Biogenic Components in the Region off the Lutzow-Holm Bay, East Antarctica during the Last 700 Kyr  

Kim, Yeo-Hun (Department of Oceanography, College of Natural Science Pusan National University)
Katsuki, Kota (Center for Advanced Marine Core Research Center, Kochi University)
Suganuma, Yusuke (National Institute of Polar Research)
Ikehara, Minoru (Center for Advanced Marine Core Research Center, Kochi University)
Khim, Boo-Keun (Department of Oceanography, College of Natural Science Pusan National University)
Publication Information
Ocean and Polar Research / v.33, no.3, 2011 , pp. 211-221 More about this Journal
Abstract
Contents of biogenic components [opal, $CaCO_3$, TOC (total organic carbon)] were measured in Core LHB-3PC sediments collected off Lutzow-Holm Bay, in order to understand glacial-interglacial cyclic variation of the high-latitude surface-water paleoproductivity, in the Indian Sector of the Southern Ocean. An age model was established from the correlation of ARM/IRM ratios of Core LHB-3PC with LR04 stack benthic ${\delta}^{18}O$ records, in complement with radiocarbon isotope ages and biostratigraphic Last Appearance Datum (LAD). The core-bottom age was estimated to be about 700 ka. Although the $CaCO_3$ content is very low less than 1.0% throughout the core, the opal and TOC contents show clear glacial-interglacial cyclic variation such that they are high during the interglacial periods (7.2-50.3% and 0.05-1.00%, respectively) and low during the glacial periods (5.2-25.2% and 0.01-0.68%, respectively). According to the spectral analysis, the variation of opal content is controlled mainly by eccentricity forcing and subsequently by obliquity forcing during the last 700 kyrs. The opal contents of Core LHB-3PC also represent the apparent Mid-Pleistocene Transition (MPT)-related climatic variation in the glacial-interglacial cycles. In particular, the orbital variation of the opal contents shows increasing amplitudes since marine isotope stage (MIS) 11, which defines one of the important paleoclimatic events during the late Quaternary, called the "Mid-Brunhes Event". Based on the variation of the opal contents in Core LHB-3PC, we suggest that the surface-water paleoproductivity in the Indian Sector of the Southern Ocean followed the orbital (glacial-interglacial) cycles, and was controlled mainly by the extent of sea ice distribution during the last 700 kyrs.
Keywords
opal; paleoproductivity; glacial-interglacial; the Mid-Brunhes Event; Southern Ocean;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1992) On the structure and origin of major glaciation cycles, 1. Paleoceanography 7:701-738   DOI
2 Imbrie J, Berger A, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morely JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1993) On the structure and origin of major glaciation cycles, 2. Paleoceanography 8:699-735   DOI
3 Jansen JHF, Kuijpers A, Troelstra SR (1986) A Mid-Brunhes climatic event: long term changes in global atmospheric and ocean circulation. Science 232:619-622   DOI   ScienceOn
4 Keir RS (1989) Paleoproduction and atmospheric $CO_2$ based on ocean modeling. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the Ocean : present and past. Wiley, New York, pp 395-406
5 Knox F, McElroy M (1984) Changes in atmospheric $CO_2$: influence of the marine biota at high latitudes. J Geophy Res 89:4629-4637   DOI
6 Kolla V, Bé AWH, Biscaye P (1976) Calcium carbonate distribution in the surface sediments of the Indian Ocean. J Geophy Res 81:2605-2616   DOI
7 Kumar N, Anderson RF, Mortlock RA, Froelich PN, Kubik P, Dittrich-Hannen B, Sutere M (1995) Increased biological productivity and export production in the glacial Southern Ocean. Nature 378:675-680   DOI
8 Cortese G, Gersonde R, Hillenbrand CD, Kuhn G (2004) Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth Planet Sci Lett 224:509-527   DOI   ScienceOn
9 Crosta X, Pichon JJ, Burckle LH (1998a) Application of modern analog technique to marine Antarctic diatoms: reconstruction of maximum sea-ice extent at the Last Glacial Maximum. Paleoceanography 13:284-297   DOI   ScienceOn
10 Crosta X, Pichon JJ, Burckle LH (1998b) Reappraisal of Antarctic seasonal sea-ice at the Last Glacial Maximum. Geophys Resh Lett 25:2703-2706   DOI   ScienceOn
11 De La Rocha CL, Brzezinski MA, DeNiro MJ (1998) Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395:680-683   DOI
12 Diekmann B, Kuhn G (2002) Sedimentary record of the mid-Pleistocene climate transition in the southeastern South Atlantic (ODP Site 1090). Palaeogeogr Palaeocl 182:241-258   DOI   ScienceOn
13 Frank M, Gersonde R, van der Loeff MR, Bohrmann G, Nürnberg CC, Kubik PW, Suter M, Mangini A (2000) Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: Multiproxy evidence and implications for glacial atmospheric $CO_2$. Paleoceanography 15:642-658   DOI   ScienceOn
14 Gersonde R, Zielinski U (2000) The reconstruction of late Quaternary Antarctic sea-ice distribution-the use of diatoms as a proxy for sea-ice. Palaeogeogr Palaeocl 162:263-286   DOI   ScienceOn
15 Gersonde R, Crosta X, Abelmann A, Armand L (2005) Seasurface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximuma circum-Antarctic view based on siliceous microfossil records. Quaternary Sci Rev 24:869-896   DOI   ScienceOn
16 Greenfell TC (1983) A theoretical model of the optical properties of sea-ice in the visible and near infrared. J Geophy Res 88:9723-9735   DOI
17 Abelmann A, Gersonde R, Cortese G, Kuhn G, Smetacek V (2006) Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean. Paleoceanography 21:PA1013. doi:10.1029/2005PA001199   DOI   ScienceOn
18 Armand LK, Crosta X, Romero O, Pichon JJ (2005) The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palaeogeogr Palaeocl 223:93-126   DOI   ScienceOn
19 Anderson RF, Kumar N, Mortlock RA, Froelich PN, Kubik P, Dittrich-Hannen B, Suter M (1998) Late Quaternary changes in productivity of the Southern Ocean. J Mar Syst 17:497-514   DOI   ScienceOn
20 Anderson RF, Chase Z, Fleisher MQ, Sachs J (2002) The Southern Ocean's biological pump during the Last Glacial Maximum. Deep-Sea Res II 49:1909-1938   DOI   ScienceOn
21 Bareille G, Labracherie M, Bertrand P, Labeyrie L, Lavaux G, Dignan M (1998) Glacial-interglacial changes in the accumulation rates of major biogenic components in Southern Indian Ocean sediments. J Mar Syst 17:527-539   DOI   ScienceOn
22 Berger WH, Winterer EL (1974) Plate stratigraphy and the fluctuating carbonate line. In: Kenneth JH, Jenkyns HC (eds) Pelagic Sediments: on land and under the sea. Blackwell, London, pp 11-48
23 Brzezinski MA, Pride CJ, Frank VM, Sigman DM, Sarmiento JL, Matsumoto K, Gruber N, Rau GH, Coale KH (2002) A switch from $Si(OH)_4$ to $NO_3^-$ depletion in the glacial Southern Ocean. Geophys Resh Lett 29(12):1564-1567. doi:10.1029/2001GL014349   DOI   ScienceOn
24 Charles CD, Froelich PN, Zibello MA, Mortlock RA, Morley JJ (1991) Biogenic opal in Southern Ocean sediments over the last 450,000 years: implications for surface water chemistry and circulation. Paleoceanography 6:697-728   DOI
25 Chase Z, Anderson RF, Fleisher MQ, Kubik PW (2003) Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years. Deep-Sea Res II 50:799-832   DOI   ScienceOn
26 Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air $CO_2$ flux based on climatological surface ocean $pCO_2$, and seasonal biological and temperature effects. Deep-Sea Res II 49:1601-1622   DOI   ScienceOn
27 Abelmann A, Gersonde R (1991) Biosiliceous particle flux in the Southern Ocean. Mar Chem 35:503-536   DOI   ScienceOn
28 Wefer G, Fischer G (1991) Annual primary production and export flux in the Southern Ocean from sediment trap data. Mar Chem 35:597-613   DOI   ScienceOn
29 Schmieder F, Dobeneck T, Bleil U (2000) The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interim state and terminal event. Earth Planet Sci Lett 179:539-549   DOI   ScienceOn
30 Stuiver M, Reimer PJ (1993) Extended $^{14}C$ database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215-230
31 Venuti A, Florindo F, Michel E, Hall IR (2007) Magnetic proxy for the deep (Pacific) western boundary current variability across the mid-Pleistocene climate transition. Earth Planet Sci Lett 259:107-118   DOI   ScienceOn
32 Thamban M, Naik SS, Mohan R, Rajakumar A, Basavaiah N, D'Souza W, Kerkar S, Subramaniam MM, Sudhakar M, Pandey PC (2005) Changes in the source and transport mechanism of terrigenous input to the Indian sector of Southern Ocean during the late Quaternary and its palaeoceanographic implications. J Earth Syst Sci 114:443-452   DOI
33 Thouveny N, Carcaillet J, Moreno E, Leduc G, Nerini D (2004) Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin. Earth Planet Sci Lett 219:377-396   DOI   ScienceOn
34 Van Andel TH (1975) Mesozoic-Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet Sci Lett 26:83-97
35 Volat JL, Pastouret L, Vergnaud-Grazzini C (1980) Dissolution and carbonate fluctuations in Pleistocene deep-sea cores: a review. Mar Geol 34:1-28   DOI   ScienceOn
36 Muller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Res I 40:425-444   DOI   ScienceOn
37 Orsi AH, Whitworth III T, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res I 42:641-673   DOI   ScienceOn
38 Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429-436   DOI
39 Rousse S, Kissel C, Laj C, Eiríksson J, Knudsen KL (2006) Holocene centennial to millennial-scale climate variability: Evidence from high-resolution magnetic analyses of the last 10 cal kyr off North Iceland (core MD99-2275 Earth Planet Sci Lett 242:390-405   DOI   ScienceOn
40 Rabouille C, Gaillard JF, Tréguer P, Vincendeau MA (1997) Biogenic silica recycling in surficial sediments across the Polar Front of the Southern Ocean (Indian Sector). Deep-Sea Res II 44:1151-1176   DOI   ScienceOn
41 Ruddiman WF, Raymo ME, Martinson DG, Clement BM, Backman J (1989) Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4:353-412   DOI
42 Ruhlemann C, Müller PJ, Schneider RR (1999) Organic carbon and carbonate as paleoproductivity proxies: examples from high and low productivity areas of the tropical Atlantic. In: Fischer G, Wefer G (eds) Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer-Verlag, Berlin Heidelberg, pp 315-344
43 Sarmiento J, Toggweiler R (1984) A new model for the role of the oceans in the determining atmospheric $pCO_2$. Nature 308:621-624   DOI
44 Kunz-Pirrung M, Gersonde R, Hodell DA (2002) Mid-Brunhes century-scale diatom sea surface temperature and sea ice records from the Atlantic sector of the Southern Ocean (ODP Leg 177, sites 1093, 1094 and core PS2089-2). Palaeogeogr Palaeocl 182:305-328   DOI   ScienceOn
45 Leventer A (2003) Particulate flux from sea ice in polar waters. In: Thomas DN, Dieckmann GS (eds) Sea Ice:an Introduction to its Physics, Chemistry, Biology and Geology. Blackwell Science, Oxford, pp 303-332
46 Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic ${\delta}^{18}O$ records. Paleoceanography 20:PA1003. doi:10.1029/2004PA001071   DOI   ScienceOn
47 Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res I 36:1415-1426   DOI   ScienceOn
48 Martinson DG, Iannuzzi RA (1998) Antarctic Ocean-ice interaction: implications from ocean bulk property distribution in the Weddell Gyre. In: Jeffries MO (ed) Antarctic Research Series, vol 74. American Geophysical Union, Washington DC, pp 243-271
49 Meynadier L, Valet JP, Grousset FE (1995) Magneticproperties and origin of upper Quaternary sediments in the Somali Basin, Indian-Ocean. Paleoceanography 10:459-472   DOI   ScienceOn
50 Mohan R, Shanvas S, Thamban M, Sudhakar M (2006) Spatial distribution of diatoms in surface sediments from the Indian sector of Southern Ocean. Curr Sci 91:1495-1502
51 Mortlock RA, Charles CD, Froelilch PN, Zibello MA, Saltzmann J, Hays JD, Burckle LH (1991) Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351:220-222   DOI
52 Mudelsee M, Schulz M (1997) The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume buildup by 280 ka. Earth Planet Sci Lett 151:117-123   DOI   ScienceOn
53 Hays JD, Lozano JA, Shackleton N, Irving G (1976) Reconstructions of the Atlantic and western Indian oceanic sectors of the 18,000 BP Antarctic Ocean. In: Cline RM, Hays JD (eds) Investigations of Late Quaternary Paleoceanography and Paleoclimatology. Geological Society of America, Colorado, pp 337-372
54 Howard WR, Prell WL (1994) Late Quaternary $CaCO_3$ production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling. Paleoceanography 9:453-482   DOI