• Title/Summary/Keyword: Paleoceanography

Search Result 19, Processing Time 0.02 seconds

Paleo-Tsushima Water influx to the East Sea during the lowest sea level of the late Quaternary

  • Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.714-724
    • /
    • 2005
  • The East Sea, a semi-enclosed marginal sea with shallow straits in the northwest Pacific, is marked by the nearly geographic isolation and the low sea surface salinity during the last glacial maximum (LGM). The East Sea might have the only connection to the open ocean through the Korea Strait with a sill depth of 130 m, allowing the paleo-Tsushima Water to enter the sea during the LGM. The low paleosalinity associated with abnormally light $\delta^{18}O$ values of planktonic foraminifera is interpreted to have resulted from river discharge and precipitation. Nevertheless, two LGM features in the East Sea are disputable. This study attempts to estimate volume transport of the paleo-Tsushima Water via the Korea Strait and further examines its effect on the low sea surface salinity (SSS) during the lowest sea level of the LGM. The East Sea was not completely isolated, but partially linked to the northern East China Sea through the Korea Strait during the LGM. The volume transport of the paleo-Tsushima Water during the LGM is calculated approximately$(0.5\~2.1)\times10^{12}m^3/yr$ on the basis of the selected seismic reflection profiles along with bathymetry and current data. The annual influx of the paleo-Tsushima Water is low, compared to the 100 m-thick surface water volume $(about\;79.75\times10^{12}m^3)$ in the East Sea. The paleo-Tsushima Water influx might have changed the surface water properties within a geologically short time, potentially decreasing sea surface salinity. However, the effect of volume transport on the low sea surface salinity essentially depends on freshwater amounts within the paleo-Tsushima Water and excessive evaporation during the glacial lowstands of sea level. Even though the paleo-Tsushima Water is assumed to have been entirely freshwater at that time period, it would annually reduce only about 1‰ of salinity in the surface water of the East Sea. Thus, the paleo-Tsushima Water influx itself might not be large enough to significantly reduce the paleosalinity of about 100 m-thick surface layer during the LGM. This further suggests contribution of additional river discharges from nearby fluvial systems (e.g. the Amur River) to freshen the surface water.

Population Genetic Structure and Evidence of Demographic Expansion of the Ayu (Plecoglossus altivelis) in East Asia

  • Kwan, Ye-Seul;Song, Hye-Kyung;Lee, Hyun-Jung;Lee, Wan-Ok;Won, Yong-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • v.28 no.4
    • /
    • pp.279-290
    • /
    • 2012
  • Plecoglossus altivelis (ayu) is an amphidromous fish widely distributed in Northeastern Asia from the East China Sea to the northern Japanese coastal waters, encompassing the Korean Peninsula within its range. The shore lines of northeastern region in Asia have severely fluctuated following glaciations in the Quaternary. In the present study, we investigate the population genetic structure and historical demographic change of P. altivelis at a population level in East Asia. Analysis of molecular variance (AMOVA) based on 244 mitochondrial control region DNA sequences clearly showed that as the sampling scope extended to a larger geographic area, genetic differentiation began to become significant, particularly among Northeastern populations. A series of hierarchical AMOVA could detect the genetic relationship of three closely located islands between Korea and Japan that might have been tightly connected by the regional Tsushima current. Neutrality and mismatch distribution analyses revealed a strong signature of a recent population expansion of P. altivelis in East Asia, estimated at 126 to 391 thousand years ago during the late Pleistocene. Therefore it suggests that the present population of P. altivelis traces back to its approximate demographic change long before the last glacial maximum. This contrasts our a priori expectation that the most recent glacial event might have the most crucial effect on the present day demography of marine organisms through bottleneck and subsequent increase of effective population size in this region.

Planktic Foraminiferal Assemblages of Core Sediments from the Korea Strait and Paleoceanographic Changes (대한해협 코아 퇴적물의 부유성 유공충 군집 특성과 고해양 환경 변화)

  • Kang, So-Ra;Lim, D.I.;Rho, K.C.;Jung, H.S.;Choi, J.Y.;Yoo, H.S.
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.464-474
    • /
    • 2006
  • The paleoceanography since 14 ka was reconstructed based on the planktic foraminiferal assemblages of core sediments from the outer shelf of the Korea Strait. Planktic foraminifera in the core sediments can be divided into four assemblages: A, B, C, and D. Assemblage A consists mainly of Globigerinoides ruber group and Globigerinoides conglobatus with low abundance (less than 10%), indicating the tropical-subtropical water mass. Assemblage B is composed of Pulleniatina obliquiloculata and Neogloboquadrina dutertrei, the indicator of Kuroshio Current, and shows the aspect of the inflow of the Tsushima Current into the Korea Strait. Assemblage C yields polar-subpolar species, mainly Neogloboquadrina incompta and N. pachyderma. It decreases upward of the core. Assemblage D contains coastal water species such as Globigerina bulloides and G. quinqueloba. It is abundant in the lower to middle region of the core. From the analysis of distributions of each assemblage and the result of age datings in the core, it is suggested that the Korea Strait played a role of channelling the East China Sea and the East Sea after the LGM (ca. 14 ka). During this time, the coastal water, affected by fresh waters originated from the river systems of China and/ or the Korean Peninsula, flourished around the Korea Strait and theses coastal water might entered to the East Sea. Around 8.5 ka, the effect of the Tsushima Current started to strengthen in this region, and the present current system seems to be formed at about $7{\sim}6ka$.

The Characteristics of Organic Matter in the Quaternary Sediments from ODP Leg 127 Site 794A, East Sea (동해 ODP Leg 127 Site 794A에서 채취한 제4기 퇴적물의 유기지화학적 특성 연구)

  • Lee Sang Il;Lee Young-Joo;Kim Ji Hoon;Oh Jae Ho;Yun HyeSu
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.707-716
    • /
    • 2005
  • Organic geochemical analyses including Rock-Eval pyrolysis, elemental analysis and stable carbon isotope analysis were performed to evaluate the characteristics of organic matter in the ODP Leg 127 Site 794A sediments and to understand paleoceanographic changes. Based on the TOC contents, C/N ratio, HI vs. OI, $\delta^{13}C_{org}$ and C/S ratio, results imply that dark layers containing a large amount of terrigenous organic matter were deposited under the suboxic/anoxic conditions, whereas the light layers containing largely marine organic matter were deposited under the oxic conditions. These results indicate that increasing surface-productivity by the input of a large amount of terrigenous organic matter from adjacent continent led to the deposition of dark layers during the interglacial highstands, whereas marine primary production and dilution caused by Kosa from the China desert area led to the deposition of light layers with the decreased to terrigenous organic matter during the glacial lowstands.

Holocene Glaciomarine Sedimentation and Its Paleoclimatic Implication on the Svalbard Fjord in the Arctic Sea (북극해 스발바드 군도 피오르드에서 일어난 홀로세의 빙해양 퇴적작용과 고기후적 의미)

  • Yoon, Ho-Il;Kim, Yea-Dong;Yoo, Kyu-Cheul;Lee, Jae-Il;Nam, Seung-Il
    • Ocean and Polar Research
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Analyses of sedimentological and geochemical parameters from two radiocarbon-dated sediment cores (JM98-845-PC and JM98-818-PC) retrieved from the central part of Isfjorden, Svalbard, in the Arctic Sea, reveal detailed paleoclimatic and paleoceanographic histories over the last 15,000 radiocarbon years. The overconsolidated diamicton at the base of core JM98-845-PC is supposed to be a basal till deposited beneath pounding glacier that had advanced during the LGM (Last Glacial Maximum). Deglaciation of the fjord commenced after the glacial maximum, marked by the deposition of interlaminated sand and mud in the ice-proximal zone by subglacial meltwater discharge, and prevailed between 13,700 and 10,800 yr B.P. with enriched-terrigenous organic materials. A return to colder conditions occurred at around 10,800 yr B.P. with a drop in TOC content, which is probably coincident with the Younger Dryas event in the North Atlantic region. At this time, an abrupt decrease of TOC content as well as an increase in C/N ratio suggests enhanced terrigenous input due to the glacial readvance. A climatic optimum is recognized between 8,395 and 2,442 yr B.P., coinciding with 'a mid-Holocene climatic optimum' in Northern Hemisphere sites (e.g., the Laurentide Ice sheet). During this time, as the sea ice receded from the fjord, enhanced primary productivity occurred in open marine conditions, resulting in the deposition of organic-enriched pebbly mud with evidence of TOC maxima and C/N ratio minima in sediments. Fast ice also disappeared from the coast, providing the maximum of IRD (ice-rafted debris) input. Around 2,442 yr B.p. (the onset of Neoglacial), pebbly mud, characterized by a decrease in TOC content, reflects the formation of more extensive sea ice and fast ice, which might cause decreased primary productivity in the surface water, as evidenced by a decrease in TOC content. Our results provide evidence of climatic change on the Svalbard fjords that helps to refine the existence and timing of late Pleistocene and Holocene millennial-scale climatic events in the Northern Hemisphere.

Late Holocene Paleoceanography from Core Sediments in the Admiralty Bay and Maxwell Bay, King George Island, Antarctica (남극 킹 죠지 섬 에드미럴티 만과 멕스웰 만 시추 퇴적물의 홀로세 후기 고해양환 경 연구)

  • 박병권;윤호일
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.302-319
    • /
    • 1995
  • The geochemical properties, sedimentation rates, foraminiferal distributions, and oxygen and carbon isotope records of sediment from Cores S-2 and S-19 were studied to investigate late Holocene paleoceanographic and paleoclimatic changes of the admiralty and Maxwell Bay, King George Island, Antarctica. Total organic carbon contents increased from the lower part to the upper part of Cores S-2 and S-19, whereas calcium carbonate contents decreased from the lower part to the upper part of Cores S-2 and s-19,whereas calcium carbonate contents decreased from the lower part to the upper part of Cores S-2 and S-19. Twenty-seven foraminiferal species were identified, and Globocassidurina biora was mostly a bundant in sediment samples. The sedimentation rates ranged from 24 cm/kyr to 237 cm/kyr based on /SUP 14/C-age dating of G. biora. The sedimentation rates increased rapidly in the upper part of the Cores. б/SUP 18/O values ranged from 0.3% to 6.2% and б/SUP 13/C values ranged from -3.0% to 0.0% with several fluctuations of the values. The lowest part of Core S-2, at 128 cmbsf in depth, had a /SUP 14/C-age of 3,100${\pm}$60 yr B.P. and the lowest part of Core S-19, at 230 cmbsf in depth, of 7,400${\pm}$ yr B.P. The results of geochemical and sedimentological analyses of the core sediments suggested five stages of paleoceanographic and paleoclimatic changes as follows: war,-cold stage of 7,500∼6,500 yr B.P., cold stage of 6,500∼3,600 yr B.P., cold-warm stage of 3,600∼2,770 yr B.P., warm stage of 2,770∼2,380 yr B.P. and cold-warm stage of 2,380∼2,100 yr B.P.

  • PDF

Stratigraphy and Paleoceanography of deep-sea core sediments from the Korea Deep Ocean Study (KODOS)-97 Area, Northeast Equatorial Pacific (북동태평양 KODOS-97지역 주상 퇴적물의 층서 및 고해양학적 연구)

  • Park, Jeong-Hee;Kim, Ki-Hyune
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.50-62
    • /
    • 1999
  • Sediment core samples recovered from the Korea Deep Ocean Study (KODOS)-97 area were divided into two or three units according to their distinct changes in sediment colors and chemical and physical properties. Analyses of radiolarian faunas in the sediments and $^{10}Be$ ratios in each unit were performed to reveal stratigraphic and paleoceanographic history of the study area. In the upper part of the sediments, Tertiary radiolarians were mixed at various proportions with Quaternary assemblages probably by reworking process of bottom current and benthic animals. Dissolution of radiolarians was severe in deeper depth and in the Unit III, only few of the fragments of corroded Tertiary radiolarians were detectable. The mid layer of the Unit I belonged to Collosphaera invaginata Zone, the time period of 0.21 Ma. The Unit II belonged to Collosphaera tuberosa Zone with the time period younger than 0.42 Ma which was observed above the Stylatractus universus Zone. The Unit III is assigned to Tertiary, which is younger than the Late Eocene. Composition analyses of radiolarian assemblage and $^{10}Be$ ratio data indicated hiatus periods of more than 3 My between late of Middle Miocene and Pliocene resulting from erosion and dissolution caused by Antarctic Bottom Water. Stratigraphic evidence from radiolaria was well correlated with $^{10}Be$ data. Sedimentation rate during Quaternary can be suggested as 0.15-0.5 mm per 1000 years. Dominance of warm-water radiolaria species and the results reflected minimum climatic changes of tropical conditions.

  • PDF

Variation of Biogenic Opal Production on the Conrad Rise in the Indian Sector of the Southern Ocean since the Last Glacial Period (남극해 인도양 해역에 위치한 콘래드 해령 지역의 마지막 빙하기 이후 생물기원 오팔 생산의 변화)

  • JuYeon Yang;Minoru Ikehara;Hyuk Choi;Boo-Keun Khim
    • Ocean and Polar Research
    • /
    • v.45 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • Biological pump processes generated by diatom production in the surface water of the Southern Ocean play an important role in exchanging CO2 gas between the atmosphere and ocean. In this study, the biogenic opal content of the sediments was measured to elucidate the variation in the primary production of diatoms in the surface water of the Southern Ocean since the last glacial period. A piston core (COR-1bPC) was collected from the Conrad Rise, which is located in the Indian sector of the Southern Ocean. The sediments were mainly composed of siliceous ooze, and sediment lightness increased and magnetic susceptibility decreased in an upward direction. The biogenic opal content was low (38.9%) during the last glacial period and high (73.4%) during the Holocene, showing a similar variation to that of Antarctic ice core ΔT and CO2 concentration. In addition, the variation of biogenic opal content in core COR-1bPC is consistent with previous results reported in the Antarctic Zone, south of the Antarctic Polar Front, in the Southern Ocean. The glacial-interglacial biogenic opal production was influenced by the extent of sea ice coverage and degree of water column stability. During the last glacial period, the diatom production was reduced due to the penetration of light being limited in the euphotic zone by the extended sea ice coverage caused by the lowered seawater temperature. In addition, the formation of a strong thermocline in more extensive areas of sea ice coverage led to stronger water column stability, resulting in reduced diatom production due to the reduction in the supply of nutrient-rich subsurface water caused by a decrease in upwelling intensity. Under such environmental circumstances, diatom productivity decreased in the Antarctic Zone during the last glacial period, but the biogenic opal content increased rapidly under warming conditions with the onset of deglaciation.

Diatom Assemblages and its Paleoceanography of the Holocene Glaciomarine Sediments from the Western Antarctic Peninsula shelf, Antarctica (남극반도 서 대륙붕의 빙해양 퇴적물의 규조군집 특성과 고해양 변화)

  • Shin, Yu-Na;Kim, Yea-Dong;Kang, Cheon-Yoon;Yoon, Ho-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.152-163
    • /
    • 2001
  • Based upon the sedimentological, geochemical and micropaleontological analyses of two sediment cores from the Antarctic Peninsula (AP), three distinct lithological units can be recognized: (1) ice-proximal an/or ice-distal diamictons in the lower part of the cores, accumulated just seaward of the grounding line of the ice shlef until 11,000 yrs BP; (2) diatomaceous mud between 6,000 and 2,500 yrs BP in the middle part, resulted from a large influx of organic materials by enhanced production of open marine condition; (3) diatomaceous sandy mud since 2,500 yrs BP, characterized by an increase in sand content and decrease in TOC and diatom abundance in the lower layers, which reflects the formation of more extensive and seasonally persistent sea ice. Based on the C-14 radiocarbon dating, the sub-ice shlef deposition of the diamicton on the AP western shelf completed around 11,000 yrs BP. Colder condition was reinstated between 12,800 and 11,600 BP with a dropin TOC content and diatom abundance, which is coincident with the Younger Dryas event in the North Atlanticregion. At this time, the ice shelf, that is now absent in the study area, appears to advance as evidenced by an abrupt increase in sea-ice taxa. A climatic optimum is recognized between 9,000 and 2,500 BP, coincide witha mid-Holocene climatic optimum 'Hypsithermal Warm Period' from the other Antarctic sites. During this time, diatomaceous mud accumulated by a large influx of organic materials by enhanced production occurred in openmarine condition. Around 2,500 BP, diatomaceous sandy mud reflects the formation of more extensive and seasonally persistent sea ice, coincident with the onset of the Neoglacial in the Antarctic. Our results provide evidence of climatic change from the Antarctic Peninsula`s western shelf that helps in determining the existence and timing of Holocene milennial-scale climatic events in the Southern Hemisphere.

  • PDF