• Title/Summary/Keyword: Pairing computation

Search Result 46, Processing Time 0.024 seconds

A Study on Efficient ID-based Partially Blind Signature (효율적인 ID 기반 부분은닉서명에 관한 연구)

  • 김현주;오수현;원동호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.6
    • /
    • pp.149-161
    • /
    • 2003
  • Partially blind signature scheme allows the signer to insert non-removable common information into his blind signature. Blind signatures providing with both users privacy and data authenticity are one of key parts of information systems, such anonymous electronic cash and electronic voting as typical examples. Partially blind signature, with which all expired e-cash but for still-alive can be removed from the banks database, copes well with the problem of unlimited growth of the banks' database in an electronic cash system. In this paper we propose an efficient ID-based partially blind signature scheme using the Weil-pairing on Gap Diffie-Hellman group. The security of our scheme relies on the hardness of Computational Diffie-Hellman Problem. The proposed scheme provides higher efficiency than existing partially blind signature schemes by using three-pass protocol between two participants, the signer and requesters also by reducing the computation load. Thus it can be efficiently used in wireless environment.

Security Analysis against RVA-based DPA Countermeasure Applied to $Eta_T$ Pairing Algorithm (RVA 기반의 페어링 부채널 대응법에 대한 안전성 분석)

  • Seo, Seog-Chung;Han, Dong-Guk;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Recently, pairings over elliptic curve have been applied for various ID-based encryption/signature/authentication/key agreement schemes. For efficiency, the $Eta_T$ pairings over GF($P^n$) (P = 2, 3) were invented, however, they are vulnerable to side channel attacks such as DPA because of their symmetric computation structure compared to other pairings such as Tate, Ate pairings. Several countermeasures have been proposed to prevent side channel attacks. Especially, Masaaki Shirase's method is very efficient with regard to computational efficiency, however, it has security flaws. This paper examines closely the security flaws of RVA-based countermeasure on $Eta_T$ Pairing algorithm from the implementation point of view.

An Efficient Broadcast Encryption System with Delegation of Decryption (복호화 위임을 제공하는 효율적인 브로드캐스트 암호시스템)

  • Han, Su Min;Park, Seung Hwan;Park, Jong Hwan;Lee, Dong Hoon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.758-770
    • /
    • 2013
  • In a Broadcast Encryption System, a sender sends an encrypted message to a large set of receivers at once over an insecure channel and it enables only users in a target set to decrypt the message with their private keys. In 2005, Boneh et al. proposed a fully collusion-resistant public key broadcast encryption in which the ciphertext and the privatekey sizes are constant. In general, pairing-based broadcast encryption system is efficient in bandwidth and storing aspects than non-pairing based broadcast encryption system, however, it requires many computational costs that resource-constrained devices is not suit to be applied. In this paper, we propose a Broadcast Encryption scheme(called BEWD) that user can decrypt a ciphertext more efficiently. The scheme is based on Boneh et al.scheme. More precisely, it reduces receiver's computational costs by delegating pairing computation to a proxy server which computation is required to receiver in Boneh et al.scheme. Furthermore, the scheme enables a user to check if the proxy server compute correctly. We show that our scheme is secure against selective IND-RCCA adversaries under l-BDHE assumption.

Provably Secure Certificate-Based Signcryption Scheme without Pairings

  • Lu, Yang;Li, Jiguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2554-2571
    • /
    • 2014
  • Certificate-based cryptography is a new cryptographic paradigm that provides an interesting balance between identity-based cryptography and traditional public key cryptography. It not only simplifies the complicated certificate management problem in traditional public key cryptography, but also eliminates the key escrow problem in identity-based cryptography. As an extension of the signcryption in certificate-based cryptography, certificate-based signcryption provides the functionalities of certificate-based encryption and certificate-based signature simultaneously. However, to the best of our knowledge, all constructions of certificate-based signcryption in the literature so far have to be based on the costly bilinear pairings. In this paper, we propose a certificate-based signcryption scheme that does not depend on the bilinear pairings. The proposed scheme is provably secure in the random oracle model. Due to avoiding the computationally-heavy paring operations, the proposed scheme significantly reduces the cost of computation and outperforms the previous certificate-based signcryption schemes.

Implementation of Multi-Precision Multiplication over Sensor Networks with Efficient Instructions

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.12-16
    • /
    • 2013
  • Sensor network is one of the strongest technologies for various applications including home automation, surveillance system and monitoring system. To ensure secure and robust network communication between sensor nodes, plain-text should be encrypted using encryption methods. However due to their limited computation power and storage, it is difficult to implement public key cryptography, including elliptic curve cryptography, RSA and pairing cryptography, on sensor networks. However, recent works have shown the possibility that public key cryptography could be made available in a sensor network environment by introducing the efficient multi-precision multiplication method. The previous method suggested a broad rule of multiplication to enhance performance. However, various features of sensor motes have not been considered. For optimized implementation, unique features should be handled. In this paper, we propose a fully optimized multiplication method depending on a different specification for sensor motes. The method improves performance by using more efficient instructions and general purpose registers.

Fast Bit-Serial Finite Field Multipliers (고속 비트-직렬 유한체 곱셈기)

  • Chang, Nam-Su;Kim, Tae-Hyun;Lee, Ok-Suk;Kim, Chang-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.49-54
    • /
    • 2008
  • In cryptosystems based on finite fields, a modular multiplication operation is the most crucial part of finite field arithmetic. Also, in multipliers with resource constrained environments, bit-serial output structures are used in general. This paper proposes two efficient bit-serial output multipliers with the polynomial basis representation for irreducible trinomials. The proposed multipliers have lower time complexity compared to previous bit-serial output multipliers. One of two proposed multipliers requires the time delay of $(m+1){\cdot}MUL+(m+1){\cdot}ADD$ which is more efficient than so-called Interleaved Multiplier with the time delay of $m{\cdot}MUL+2m{\cdot}ADD$. Therefore, in elliptic curve cryptosystems and pairing based cryptosystems with small characteristics, the proposed multipliers can result in faster overall computation. For example, if the characteristic of the finite fields used in cryprosystems is small then the proposed multipliers are approximately two times faster than previous ones.

Authenticated Identity-based Key Agreement Protocols in a Multiple Independent PKG Environment (다중 독립 PKG환경에서 인증된 신원기반 키 동의 프로토콜)

  • Lee Hoonjung;Kim Hyunsook;Kim Sangjin;Oh Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.4
    • /
    • pp.11-27
    • /
    • 2005
  • To date, most identity-based key agreement protocols are based on a single PKG (Private Key Generator) environment. In 2002, Chen and Kudla proposed an identity-based key agreement protocol for a multiple PKG environment, where each PKG shares identical system parameters but possesses distinct master key. However, it is more realistic to assume that each PKG uses different system parameters including the PKG's master key. In this paper, we propose a new two party key agreement protocol between users belonging to different PKGs that do not share system parameters. We also extend this protocol to two types of tripartite key agreement protocols. We show that our two party protocol requires minimal amount of pairing computation for a multiple PKG environment and our tripartite protocol is more efficient than existing protocols. We also show that the proposed key agreement protocols satisfy every security requirements of key agreement protocol.

Towards efficient sharing of encrypted data in cloud-based mobile social network

  • Sun, Xin;Yao, Yiyang;Xia, Yingjie;Liu, Xuejiao;Chen, Jian;Wang, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1892-1903
    • /
    • 2016
  • Mobile social network is becoming more and more popular with respect to the development and popularity of mobile devices and interpersonal sociality. As the amount of social data increases in a great deal and cloud computing techniques become developed, the architecture of mobile social network is evolved into cloud-based that mobile clients send data to the cloud and make data accessible from clients. The data in the cloud should be stored in a secure fashion to protect user privacy and restrict data sharing defined by users. Ciphertext-policy attribute-based encryption (CP-ABE) is currently considered to be a promising security solution for cloud-based mobile social network to encrypt the sensitive data. However, its ciphertext size and decryption time grow linearly with the attribute numbers in the access structure. In order to reduce the computing overhead held by the mobile devices, in this paper we propose a new Outsourcing decryption and Match-then-decrypt CP-ABE algorithm (OM-CP-ABE) which firstly outsources the computation-intensive bilinear pairing operations to a proxy, and secondly performs the decryption test on the attributes set matching access policy in ciphertexts. The experimental performance assessments show the security strength and efficiency of the proposed solution in terms of computation, communication, and storage. Also, our construction is proven to be replayable choosen-ciphertext attacks (RCCA) secure based on the decisional bilinear Diffie-Hellman (DBDH) assumption in the standard model.

A Coordinated Ciphertext Policy Attribute-based PHR Access Control with User Accountability

  • Lin, Guofeng;You, Lirong;Hu, Bing;Hong, Hanshu;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1832-1853
    • /
    • 2018
  • The personal health record (PHR) system is a promising application that provides precise information and customized services for health care. To flexibly protect sensitive data, attribute-based encryption has been widely applied for PHR access control. However, escrow, exposure and abuse of private keys still hinder its practical application in the PHR system. In this paper, we propose a coordinated ciphertext policy attribute-based access control with user accountability (CCP-ABAC-UA) for the PHR system. Its coordinated mechanism not only effectively prevents the escrow and exposure of private keys but also accurately detects whether key abuse is taking place and identifies the traitor. We claim that CCP-ABAC-UA is a user-side lightweight scheme. Especially for PHR receivers, no bilinear pairing computation is needed to access health records, so the practical mobile PHR system can be realized. By introducing a novel provably secure construction, we prove that it is secure against selectively chosen plaintext attacks. The analysis indicates that CCP-ABAC-UA achieves better performance in terms of security and user-side computational efficiency for a PHR system.

An Enhanced Privacy-Aware Authentication Scheme for Distributed Mobile Cloud Computing Services

  • Xiong, Ling;Peng, Daiyuan;Peng, Tu;Liang, Hongbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6169-6187
    • /
    • 2017
  • With the fast growth of mobile services, Mobile Cloud Computing(MCC) has gained a great deal of attention from researchers in the academic and industrial field. User authentication and privacy are significant issues in MCC environment. Recently, Tsai and Lo proposed a privacy-aware authentication scheme for distributed MCC services, which claimed to support mutual authentication and user anonymity. However, Irshad et.al. pointed out this scheme cannot achieve desired security goals and improved it. Unfortunately, this paper shall show that security features of Irshad et.al.'s scheme are achieved at the price of multiple time-consuming operations, such as three bilinear pairing operations, one map-to-point hash function operation, etc. Besides, it still suffers from two minor design flaws, including incapability of achieving three-factor security and no user revocation and re-registration. To address these issues, an enhanced and provably secure authentication scheme for distributed MCC services will be designed in this work. The proposed scheme can meet all desirable security requirements and is able to resist against various kinds of attacks. Moreover, compared with previously proposed schemes, the proposed scheme provides more security features while achieving lower computation and communication costs.