• Title/Summary/Keyword: Painted Cultural Heritage

Search Result 82, Processing Time 0.022 seconds

Study of Noncontact Condition Diagnosis on Painting with Terahertz Waves (테라헤르츠파를 이용한 회화문화재 상태진단 적용연구)

  • Baek, Na Yeon;Kang, Dai Ill;Ha, Tae Woo;Sim, Kyung Ik;Lee, Ho Won;Kim, Jae Hoon;Lee, Han Hyoung
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.235-247
    • /
    • 2016
  • Conventional imaging techniques such as ultraviolet, infrared, and X-ray are used mainly to diagnose the damaged parts of the painted cultural assets in Korea. These techniques, however, have limits in diagnosing damages of interlayer parts. We have performed and extensive study on the applicability of Terahertz(THz) analysis technique, introduced recently to this field of study on cultural properties in Korea, to diagnose painted cultural assets. The specimens, produced to imitate the damage types of Korean painted properties, were analyzed over their painting, supporting, and backing layers by terahertz pulse imaging technique. The analyzed results provided information about the cracks, the separated areas, and the separated distances between layers on the specimens. Our research, then, was extended to real painted cultural remains, Birojana Sam-shin Gwebul-do at Bongseon Temple in Namyang-ju, Korea National Treasure Number 1792, through which we have obtained 3D information about the extent and pattern of damages to the asset. These results demonstrate that terahertz 3D imaging technique has the capability of noncontact 3D diagnosis on painted cultural properties.

Characterization and Analysis of Painted Pigments for the Clay Statues in Donggwanwangmyo Shrine, Seoul (서울 동관왕묘 소조상 채색안료의 정밀분석 및 동정)

  • Lee, Chan-Hee;Yi, Jeong-Eun;Han, Na-Ra
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.101-112
    • /
    • 2012
  • The Donggwanwangmyo Shrine was built in the period of Joseon Dynasty in 1602. There are Clay Statues (Gwanwo, Jangbi, Woojanggun, Juchang, Jojaryoung and so on) enshrined in the inside of the main hall. Original color of these Clay Statues are deteriorated by inorganic pollutant like dust. And the origanal forms were damaged during several process of restorations and repaintings. This study carried out XRD, SEM-EDS, P-XRF and chromaticity measurement for characterization of pigments which painted on Clay Statues. As a result, cinnabar, hematite and red lead were used to paint in pigments for the red and brown colors. Light red pigment was made by gypsum with these minerals that make colors. Graphite and gold were used to color of black and gold pigment, respectively. Green pigment is identified of malachite, atacamite and glauconite. Blue pigment which is clearly painted on Clay Statues is interpreted a morden industrial pigment that were painted at repair work. White pigments are detected calcite, gypsum and silver white. Orpiment and litharge were used to color of yellow and light yellow pigment.

The Effect of the Base Layer on the Detection of Lines in Painted Cultural Heritage Using Infrared Photography (적외선 촬영법을 이용한 채색문화유산의 밑선 검출에 바탕층이 미치는 영향)

  • KWON Seoyun;JANG Yujin;LEE Hanhyoung;LEE Sanghyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.2
    • /
    • pp.102-115
    • /
    • 2024
  • Painted Cultural heritage uses various materials such as paper, silk, wood, soil, and lime as a base layer to draw on using ink sticks and express lines or colors using various colorants. The importance of underdrawings is emphasized when it comes to replication and preservation, as they can reveal the original drawing. Investigations using infrared have been extensively conducted to detect underdrawings. However, there has been a paucity of research on the influence of underdrawing detection according to the base layer. In this study, the effect of the base layer materials on underdrawing detection in painted cultural heritage was confirmed using an infrared camera and hyperspectral camera (900 to 1700 nm). The study samples marked '檢' with ink below the color layer (cinnabar, orpiment, malachite, azurite, white lead, and red lead) by the base layer materials: Paper (Dakji, indigo/Dakji), silk (silk, silk/white lead), wood (celadonite/wood), soil (celadonite/soil), and lime. The difference in the effect on underdrawing detection was minimal for paper and silk, and no significant differences were found between Dakji and indigo/Dakji, or between silk and silk/white lead. However, we found that celadonite/wood, celadonite/soil, and lime have a significant impact on underdrawing detection. In particular, for wood and soil painted with celadonite, underdrawings were not detected for all six color layers. In the case of lime, it was found that all color layers except malachite had a more positive effect on underdrawing detection. The findings of this study will aid in selecting the appropriate method for underdrawing analysis in the restoration of painted cultural heritage.

Study on Material Characteristic of Modern Cultural Heritage Rickshaw (근·현대문화재 인력거 재질분석 연구)

  • Kim, Soo Chul;Choi, Jae Wan;Lee, Jee Eun
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.33-42
    • /
    • 2016
  • Modern cultural heritage were made with various materials. But there are no certain analysis for modern cultural heritage. Analysis on rickshaw from National Museum of Korean Contemporary History were carried out using P-XRF, species identification, paint film analysis, FT-IR and microscope observation. As a result Copper and Zinc were measured in metal parts. Nickel alloys were first used in the modern era for rickshaw. Wooden parts, Oak(Quercus spp.), bamboo(Phyllostachys spp.) and Hinoki cypress(Chamaecyparis spp.) were identified. Outer films were painted by 5 layers and inner films were painted by 3 layers. More simple painting process were performed on the inner part. Cotton and wool were identified by FT-IR. Also, cowhide were identified. Authenticity conservation and restoration could be carried out with the results.

A Basic Research for Preservation of Works Exhibited in the Outdoor Sculpture Park - A Scientific Analysis of Painted Work 'Conversion' Exhibited in the Cheonmasan Sculpture Park -

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.391-401
    • /
    • 2021
  • Outdoor sculptures of modern art works are being damaged and deteriorated as they are exposed to the outdoor environment due to the nature of exhibition in the outdoor environment, but secure of basic data through the measures for conservation and advanced researches still remain in the early stage. The surface of "Conversion" which is exhibited in the Busan Cheonmasan Sculpture Park has been exfoliated and deteriorated due to outdoor exhibition for a long time, so systematic conservation and management of works are considered necessary. Prior to the conservation and management, this study conducted observation of cross section, analysis of inorganic components, FT-IR, Raman and Py-GC/Mass analysis to examine the nature and type of paints used for the work through a scientific analysis. As a result of analysis, paints used for the "Conversion" include paint mixed with silvery aluminium powder and white pigment, reddish paint mixed with toluidine red, bluish paint that mixed prussian blue and titanium white and mixture of phthalocyanine blue and titanium white. The result is expected to be used as basic data for selecting materials necessary for conservative treatment of and establishing a plan for conservative treatment of the "Conversion".

The Study on the perilla oil for the conservation of wooden cultural properties (목조문화재 보존 및 단청에 이용하는 들기름에 관한 연구)

  • Kim, Soon-Kwan;Hong, Jung-Ki
    • 보존과학연구
    • /
    • s.21
    • /
    • pp.273-291
    • /
    • 2000
  • The perilla oil is painted to the wooden cultural properties of protection of wood and pigment. But that is happened to discolor and gather mold because of the long drying time. So we were put to the test for the improvement of this matter. The result is follows;1. The perilla oil, do not parched domestic Perilla japonica, add to the Japanese acid clay, later passing through the filter paper that the pore size is less than $7\mum$ 2. If the perilla oil add to the antiseptic of Thiazole origin, the mold is suppressed.3. In the painting of perilla oil, the existing Dan-chung paints one time (Luster generation in the more than two times) and the non-existing Dan-Chung paints two times.

  • PDF

An Analytical Investigation on the Dancheong Pigments by Hyperspectral Technique: Focusing on Green Colors

  • Jung, Cham Hee;Lee, Han Hyoung;Song, You Na;Min, Kyeong Jin;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.345-361
    • /
    • 2019
  • This study demonstrates the application of hyperspectral analysis as a pigment identification method for modern and contemporary Dancheong, the polychrome surface on traditional Korean wooden buildings. In particular, green pigments are the focus of this study. Green pigments in modern and contemporary Dancheong have the largest variation of materials and show a noticeable timeline. Thus, they are most suitable for estimating the manufacture or restoration period of Dancheong. Hyperspectral analysis is a noncontact, long-distance measurement technique that has advantages in the field of Dancheong analysis. It is capable of identifying both organic and inorganic pigments, unlike existing analysis methods. For this experiment, green and other pigments used during the modern and contemporary era were selected and made into painted samples under various mixing conditions that reflect their actual uses. Through hyperspectral analysis, their reflectance characteristics were observed, which enables the derivation of four main features that can distinguish the type of pigments used for color mixture. Based on these, a pigment identification system was designed in the form of a flowchart, and its utility was confirmed through site application. Despite some limitations at this stage, the technique can be complemented by considering proper measurement methods or the continuous accumulation of samples and data. If a database on various materials, mixing ratios, painting techniques, and other external interference factors is developed in future research, it would provide the foundation for a faster and safer analysis environment of Dancheong sites.

The composition analysis of Danchung pigments at Geunjeongjeon Hall in Gyeongbokgung Palace (경복궁 근정전 단청안료의 성분분석)

  • Cho, Nam-Chul;Moon, Whan-Suk;Hong, Jong-Ouk;Hwang, Jin-Ju
    • 보존과학연구
    • /
    • s.22
    • /
    • pp.93-114
    • /
    • 2001
  • The composition analysis of Danchung pigments at Geunjeongjeon Hall in Gyeongbokgung Palace were carried out by FXRF and MXRD. The analytical result of the inside pigments at Geunjeongjeon showed that these painted in use the mineral pigments. Gold pigment was pure gold(Au).The main composition identified in green pigments were chalcanthite($CuSO_4$.$5H_2O$) and celadonite($K(Mg, Fe, Al)_2$.$(Si, Al)_4O_10(OH)_2$ ). Red pigments werecinnnabar(HgS).The analytical result of the outside pigments at Geunjeongjeon revealed that these applied to the artificial synthetic pigment. Yellow pigment was chromeyellow($PbCrO_4$). The main composition identified in red pigments were red lead($Pb_3O_4$)and hematite($Fe_2O_3$). Green pigments were emeral green($C_2H_3A_s3Cu_2O_8$) and chromegreen($Cr_2O_3$). Blue pigment was lazurite($Na_6Ca2Al_6Si_6O_24(SO_4)_2$), titanium dioxide($TiO_2$) of white pigment.

  • PDF

The analysis study of mural painting pigments at Pongjongsa Kuknakjon (봉정사 극락전 벽화 안료의 재질 분석 연구(II))

  • Cho, Nam-Chu;Hong, Jong-Ouk;Moon, Whan-Suk;Hwang, Jin-Ju
    • 보존과학연구
    • /
    • s.21
    • /
    • pp.119-143
    • /
    • 2000
  • The pigments composition and structure of the mural painting at Pongjongsa Kuknakjon is discussed. The structure of inner wall is consisited of Paint layer, Ground divided two layers of yellow and white pigments, Support. In case of outer wall, it is consisted of Paint layer, Ground divided three layers of yellow and green pigments, a layer mixed green pigments and paint layer, Support. As a result of compositon analysis of mural painting pigments at Pongjongsa Kuknakjon using Micro-area X-ray diffraction system, the red pigment on inner wall is consisted of Heamatite($Fe_2O_3$), Magnetite($Fe_3O_4$)of deep black pigment, and Chalcocite($Cu_2S$) of light black pigment. The white pigment on outer wall is consisted of Anglesite($PbSO_4$) and Atacamite($Cu_2CI(OH)_3$) of green pigment. We found out that natural pigments painted in the mural painting at Pongjongsa Kuknakjon has kept up its own color for a long time due to using the natural pigment not to artificial synthetic pigment.

  • PDF

The Research on the Painted Lead Glaze Pottery in the Northern Qi Dynasty in China (중국 북제(北齊) 채회유도(彩繪釉陶) 시론)

  • Kim, Ji-Hyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.20-37
    • /
    • 2017
  • It is called the "Painted lead glaze pottery" that is painted green, brown, yellow over white or light yellow glazed base among glazed pottery in the Northern Qi Dynasty. Even though the white glazed pot painted green with three ears and the yellow glazed jar painted green with long neck is found in the Fan-cui Tomb in Honghetun Village, Anyang City, Henan Province in 1971, these potteries were not focused in academic circles. While the white glazed pottery found with them was thought as the earliest evidence of the white porcelain that the date is clear, it has constantly been discussed so far. In this paper, focused on the painted lead glaze pottery, the materials from tombs and kiln sites are organized, and based on them, the decoration feature and production technique is analyzed. The emergence time of this pottery is checked by the date of tombs and the social value of this pottery is considered by the position of the buried person. The painted lead glaze pottery of the Northern Qi Dynasty has independent character such as porcelain clay, twice firing burning and painting technique over glazed base. This character emerged from several glazed potteries in the Northern Wei Dynasty and it continued to the Northern Qi Dynasty. At last, the white painted lead glazed pottery appeared. The painted lead glaze pottery was formed by the combination of a shape of the ceramic in Southern China and painting technique after the Northern Wei Dynasty in Northern China.