• Title/Summary/Keyword: Page allocation Method

Search Result 8, Processing Time 0.021 seconds

Adaptive Memory Management Method based on Utilization Ratio to Process Continuous Query (연속질의의 처리를 위한 이용률 기반의 적응적 메모리 관리 기법)

  • Baek, Sung-Ha;Lee, Dong-Wook;Eo, Sang-Hun;Chung, Weon-Il;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.79-88
    • /
    • 2009
  • The volume of memory to store real-time data stream is varied dynamically. Continuous queries processing the data stream must manage the storage volume dynamically. In previous research, according to current volume of data a general memory manager which allocates and releases memory by a page unit is researched.However, the method frequently executes page allocation and release to store data stream. Moreover, particularly delayed queries can monopolize many of pages because the method directly allocates pages when a query has not enough memory. Focusing on the problems in memory management systems, this research proposes a memory management method which reduces the frequency of allocation and release and uniformly distributes pages for queries. The method can reduce the frequency of allocation and release through allocation based on utilization ratio of pages in each query and prevent memory monopoly through memory allocation which considers query delay.

  • PDF

Efficient Page Allocation Method Considering Update Pattern in NAND Flash Memory (NAND 플래시 메모리에서 업데이트 패턴을 고려한 효율적인 페이지 할당 기법)

  • Kim, Hui-Tae;Han, Dong-Yun;Kim, Kyong-Sok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.272-284
    • /
    • 2010
  • Flash Memory differs from the hard disk, because it cannot be overwritten. Most of the flash memory file systems use not-in-place update mechanisms for the update. Flash memory file systems execute sometimes block cleaning process in order to make writable space while performing not-in-place update process. Block cleaning process collects the invalid pages and convert them into the free pages. Block cleaning process is a factor that affects directly on the performance of the flash memory. Thus this paper suggests the efficient page allocation method, which reduces block cleaning cost by minimizing the numbers of block that has valid and invalid pages at a time. The result of the simulation shows an increase in efficiency by reducing more block cleaning costs than the original YAFFS.

Multiple Pipelined Hash Joins using Synchronization of Page Execution Time (페이지 실행시간 동기화를 이용한 다중 파이프라인 해쉬 결합)

  • Lee, Kyu-Ock;Weon, Young-Sun;Hong, Man-Pyo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.7
    • /
    • pp.639-649
    • /
    • 2000
  • In the relational database systems, the join operation is one of the most time-consuming query operations. Many parallel join algorithms have been developed to reduce the execution time. Multiple hash join algorithm using allocation tree is one of most efficient ones. However, it may have some delay on the processing each node of allocation tree, which is occurred in tuple-probing phase by the difference between one page reading time of outer relation and the processing time of already read one. In this paper, to solve the performance degrading problem by the delay, we develop a join algorithm using the concept of 'synchronization of page execution time' for multiple hash joins. We reduce the processing time of each nodes in the allocation tree and improve the total system performance. In addition, we analyze the performance by building the analytical cost model and verify the validity of it by various performance comparison with previous method.

  • PDF

Improved Algorithm of CALC Method in UNISYS NDB for Efficient Page Allocation (효율적인 페이지 사용을 위한 UNISYS NDB의 CALC 배치 방식 개선 알고리즘)

  • Jo Tae-Hwan;Kim Young-Gab
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.103-105
    • /
    • 2005
  • 현재 UNISYS 네트워크 데이터베이스(Network Data Base, NDB)에서는 엔트리 레코드(entry record)를 배치시키기 위한 방법 중 CALC방식의 DMSCALC 알고리즘을 사용하고 있다. 그러나 이 알고리즘의 특성상 하위 레코드가 과다하게 발생하는 업무의 경우 동일 기본저장 페이지(primary page)에 할당되는 타 엔트리 레코드의 저장 영역에 대한 제한을 유발시켜 오우버플로워 페이지(overflow page)로 이동되고 이에 따라 성능 저하를 가져온다. 본 논문에서는 나눗셈법을 따르는 DMSCALC 알고리즘을 분석 연구하고, 엔트리 레코드가 저장되는 기본저장 페이지의 산출 알고리즘을 개선하여 기본저장 페이지 간 간격을 확보하였으며 개선 전 알고리즘과 비교할 때 기본저장 페이지 사용 율의 경우 최소 $22\%$, 최대 $41\%$에 이르는 성능 향상을 나타내었다. 또한 오우버플로워 페이지 발생률의 경우에도 최소 $47\%$, 최대 $67\%$의 감소 효과를 나타내었다.

  • PDF

Efficient Multiple Joins using the Synchronization of Page Execution Time in Limited Processors Environments (한정된 프로세서 환경에서 체이지 실행시간 동기화를 이용한 효율적인 다중 결합)

  • Lee, Kyu-Ock;Weon, Young-Sun;Hong, Man-Pyo
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.732-741
    • /
    • 2001
  • In the relational database systems the join operation is one of the most time-consuming query operations. Many parallel join algorithms have been developed 개 reduce the execution time Multiple hash join algorithm using allocation tree is one of the most efficient ones. However, it may have some delay on the processing each node of allocation tree, which is occurred in tuple-probing phase by the difference between one page reading time of outer relation and the processing time of already read one. This delay problem was solved by using the concept of synchronization of page execution time with we had proposed In this paper the effects of the performance improvements in each node of the allocation tree are extended to the whole allocation tree and the performance evaluation about that is processed. In addition we propose an efficient algorithm for multiple hash joins in limited number of processor environments according to the relationship between the number of input relations in the allocation tree and the number of processors allocated to the tree. Finally. we analyze the performance by building the analytical cost model and verify the validity of it by various performance comparison with previous method.

  • PDF

Implementation of Efficient Power Method on CUDA GPU (CUDA 기반 GPU에서 효율적인 Power Method의 구현)

  • Kim, Jung-Hwan;Kim, Jin-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.9-16
    • /
    • 2011
  • GPU computing is emerging in high performance application area since it can easily exploit massive parallelism in a way of cost-effective computing. The power method which finds the eigen vector of a given matrix is widely used in various applications such as PageRank for calculating importance of web pages. In this research we made the power method efficiently parallelized on GPU and also suggested how it can be improved to enhance its performance. The power method mainly consists of matrix-vector product and it can be easily parallelized. However, it should decide the convergence of the eigen vector and need scaling of the vector subsequently. Such operations incur several calls to GPU kernels and data movement between host and GPU memories. We improved the performance of the power method by means of reduced calls to GPU kernels, optimized thread allocation and enhanced decision operation for the convergence.

Data allocation and Replacement Method based on The Access Frequency for Improving The Performance of SSD (SSD의 성능향상을 위한 접근빈도에 따른 데이터 할당 및 교체기법)

  • Yang, Yu-Seok;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.74-82
    • /
    • 2011
  • SSD has a limitation of number of erase/write cycles and does not allow in-place update unlike the hard disk because SSD is composed of an array of NAND flash memory. Thus, FTL is used to effectively manage SSD of having different characteristics from traditional disk. FTL has page, block, log-block mapping method. Among then, when log-block mapping method such as BAST and FAST is used, the performance of SSD is degraded because frequent merge operations cause lots of pages to be copied and deleted. This paper proposes a data allocation and replacement method based on access frequency by allocating PRAM as checking area of access frequency, log blocks, storing region of hot data in SSD. The proposed method can enhance the performance and lifetime of SSD by storing cold data to flash memory and storing log blocks and frequently accessed data to PRAM and then reducing merge and erase operations. Besides, a data replacement method is used to increase utilization of PRAM which has limitation of capacity. The experimental results show that the ratio of erase operations of the proposed method is 46%, 38% smaller than those of BAST and FAST and the write performance of the proposed method is 34%, 19% higher than those of BAST and FAST, and the read performance of the proposed method is 5%, 3% higher than those of BAST and FAST, respectively.

Flash-Conscious Storage Management Method for DBMS using Dynamic Log Page Allocation (동적 로그 페이지 할당을 이용한 플래시-고려 DBMS의 스토리지 관리 기법)

  • Song, Seok-Il;Khil, Ki-Jeong;Choi, Kil-Seong
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.767-774
    • /
    • 2010
  • Due to advantages of NAND flash memory such as non-volatility, low access latency, low energy consumption, light weight, small size and shock resistance, it has become a better alternative over traditional magnetic disk drives, and has been widely used. Traditional DBMSs including mobile DBMSs may run on flash memory without any modification by using Flash Translation Layer (FTL), which emulates a random access block device to hide the characteristics of flash memory such as "erase-before-update". However, most existing FTLs are optimized for file systems, not for DBMSs, and traditional DBMSs are not aware of them. Also, traditional DBMSs do not consider the characteristics of flash memory. In this paper, we propose a flash-conscious storage system for DBMSs that utilizes flash memory as a main storage medium, and carefully put the characteristics of flash memory into considerations. The proposed flash-conscious storage system exploits log records to avoid costly update operations. It is shown that the proposed storage system outperforms the state.