• Title/Summary/Keyword: Paddy rice soil

Search Result 1,048, Processing Time 0.035 seconds

The Effect of Liquid Pig Manure on Yield of Several Forage Crops and Soil Chemical Properties (돈분액비 시용이 동·하계 사료작물의 수량 및 토양의 화학적 특성에 미치는 영향)

  • Cho, Kwang-Min;Lee, Sang-Bok;Back, Nam-Hyun;Yang, Chang-Hyu;Shin, Pyung;Lee, Kyeong-Bo;Park, Ki-Hoon;Baek, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.323-331
    • /
    • 2013
  • BACKGROUND: Liquid pig manure(LPM) is a useful resource if it is sufficiently fermented and utilized in the agriculture; it provides nutrients to soils, circulates organic materials and replaces chemical fertilizers(CF) with reasonable costs. Currently, there are not many trials in paddy field to continuously cultivate the crops in winter and summer season using LPM. METHODS AND RESULTS: When cultivating winter forage crops (Whole-crop-barley(WCB), Rye, Triticale, Italian ryegrass(IRG)) and summer feed corns in the rice field, CF was treated with $N-P_2O_5-K_2O$(winter forage crops: 120-100-100kg/ha, summer feed corn: 200-150-150 kg/ha), and subsequently, growth, yields, feed values and chemical properties of soil were investigated. LPM-applied areas in both winter and summer forage crops showed higher plant lengths and tillers than those of CF-applied areas, but the yield in CF-applied areas was higher than that of LPM-applied areas under continuous application of 2 years. Crude protein, neutral detergent fiber(NDF), acid detergent fiber(ADF) and total digestion nutrient(TDN) in feed values showed almost similar results between LPM and CF-applied areas. EC, organic matter, available phosphate and exchangeable cations of soils after the experiment increased in LPM applied areas, and especially, the contents of available phosphate and exchangeable sodium were high. CONCLUSION(S): Considering the above results, it was concluded that if LPM are properly utilized for continuous winter and summer cultivation of feed crops at paddy field, the cultivation costs could be decreased and be helpful to the stable production of domestic feeds.

Barley Sowing by Partial Tillage Direct Grain Seeder in Wet Paddy Field (논 과습포장에서 부분경운 건답직파기를 이용한 보리 파종)

  • Koo, Bon-Cheol;Kim, Jae-Cheol;Yang, Yon-Ha;Kang, Moon-Seok;Cho, Young-Son;Park, Seok-Ho;Park, Kwang-Geun;Lee, Choon-Ki;Shin, Jin-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.259-263
    • /
    • 2007
  • Sowing time of barley after cultivation of rice has frequently been delayed because of rainfall or some other reasons by rice cultivation. Partial tillage direct grain seeder with eight row, which had been developed for rice sowing and showed many advantages in wet field, were tested for barley sowing. After flooding during $2{\sim}3days$, plots were designed to make wet condition. Three sowing methods were tested; high ridged broadcasting, plat drill seeding and partial tillage direct grain seeding. It were impossible to sow properly even in 27% of soil water content by high ridged broadcasting, plat drill seeding but could be possible to sow normally by partial tillage direct grain seeder in 42% of soil water content as good as in 27% of soil water content. Initial growth condition after sowing in plots of partial tillage direct grain seeder were normal even in plots sown in more than 50% of soil water content. No. of spike, which was $508/m^2$, in plot of partial tillage direct grain seeder sowed at 30% soil water content was better than plat drill seeding, $404/m^2$. Yield and yield components of plot of partial tillage direct grain seeder, were higher than plot sowed by plat drill seeder in same soil water content. Partial tillage direct grain seeding can be a good sowing way for barley especially in wet condition. However, parts of seeder have to be improved for barley sowing; 1) ridged width of partial tillage direct grain seeder should be $10{\sim}20cm$ wider than 10 cm, which is necessary for drainage during barley growing season in wet paddy field. 2) sowing width of partial tillage direct grain seeder was not same with one of drill seeder which was the best width for light interception and should be shorter than 30cm.

Analysis of Nationwide Soil Chemical Trait for the Application of Standard Nitrogen Level in Rice Cultivation

  • Jinseok Lee;Jong-Seo Choi;Shingu Kang;Dae-Woo Lee;Woonho Yang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.121-121
    • /
    • 2022
  • When 7 kg·10a-1, which is less than the nitrogen standard application amount of 9 kg·10a-1, is applied, the protein content is lowered and the palatibility is improved. In order to examine the applicability of nitrogen fertilization of 7 kg·10a-1 nationwide, soil samples were collected from 240 paddy fields in 8 provinces in 2021, and the organic matter content, effective phosphoric acid, and effective silicic acid were analyzed for each sample. As a result of one-way ANOVA analysis between samples collected for each province, there was no significant difference in the content of organic matter, effective phosphoric acid, and effective silicic acid except for some provinces. The contents of organic matter was higher than the appropriate level(25 ~ 30 g·kg-1) except for Gyeongsangbuk-do, the effective phosphoric acid was higher than the appropriate level(80~120 mg·kg-1) in all provinces, and the effective silicic acid was lower than the appropriate level(157 ~ 180 mg·kg-1) except for Gyeonggi-do, Jeollanam-do and Gyeongsangnam-do. As a result of analyzing the recommended fertilization amount based on the nitrogen application amount of 7 kg·10a-1, 68.3% ofthe 240 samples were able to give nitrogen fertilizer less than 7.5 kg·10a-1, and the rest had to be given more than that to satisfy the standard fertilization amount. As a result of this study, 68.3% of rice paddies nationwide can be cultivated with a standard fertilization amount of 7 kg·10a-1, however it was thought that continuous nutrient management would be required for other paddies.

  • PDF

Studies on Wet Paddy Field Underdrainage Improvement in the Gum-Ho Area (I) (금호지구 저습답의 암거배수효과에 관한 연구(I))

  • 김조웅;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.82-95
    • /
    • 1980
  • This paper complies the results of the studies so far made on the subsoil improvement of subsurface drainage systems for wet paddy fields (those were located in the Gum-Ho area in Kyung Buk province) which had poor permeability and a high water table. In general, a drainage problem is an excess of water on the ground surface which can effect the productivity and bearing capacity of the soil. With drain pipe systems, (According to their depths and spacing) it may be possible to correct that problem. The experimentation consisted of three test plots, two of which included drain pipe systems with varing depths and width spacing of the pipes. The third plot (C) was an ordinary plot being exempt of a drain pipe system. In detail, the depth of plot A was 80 cm, and the width spacings began at 2. Om and increased by 2. Om up to 10. 0m. The depth of plot B was 60cm and the width spacing was the same as plot A. These tests were performed to research specific details; such as crop yeild, bearing capacity of the soil, the amount of underdrainage, surface cracks, root distribution, the water table level, the consumptive water depth and the soil moisture content. The test period lasted three years, from 1977 thru 1979. The results obtained were as follows: 1. During the test period, the weather conditions for the area tested were in accordance with the annual average for that area. Furthermore the precipitation factor during the spring cultivation season, the intermediate drainage period and the harvest drainage period was of optimum conditions for controling surface cracks, because of less precipitation than evaporation. 2. The difference in the level of the ground water table in plots A and B was hardly noticable, but the difference in the test plots and the ord. plot was greatly noticable. The test plots (A, B) were 30 to 40cm lower than the ordinary plot. On the whole, the ground water table of the ord. plot always stayed at a level of 15-20cm beneath the surface of the soil, the ground water table of the test plot A showed The difference in the depth of the pipe lower than the test plot B, while the test plots showed a remarkable descending effect. 3. The soil temperature in plot A was slightly core than in plot B with a difference of 0. 47$^{\circ}$C, but plot A was 1. 6$^{\circ}$C higher than the ord. plot during the flooding period, but after drainage the temperature difference climed to 2. 0$^{\circ}$C. 4. During the 3rd test year, the values of the cracks were recorded with the values of 59cm in plot A, 42cm in plot B and 15cm in the ordinary plot. Plots A and B had increased 2.5 times the value of the first year while the ordinary plot had remained the same. 5. The root weight of the rice was measured at a value of 77.2 gr. for plot A, 73.5 gr. for plot B and 65.3 gr. for the ord. plot. Therefore, the root growths in plots A and B were much more energetic than in the ord. plot. 6. The consumptive water depth measured during the 3rd year resulted in the values of 26. 0mm per day for plot A, and 24.9 mm per day for plot B, respectively. Therefore, both plot A and plot B maintained the optimum consumptive water depths, but the ordinary plot only obtained the value of 12.3 mm per day, which clearly showed less than the optimum consumptive water depth which is 20 to 30 mm/day. 7. The soil moisture content is in direct relationship to the ground water level. During drainage, test plot A decreased in its ground water level much more rapidly than the other two plots. Therefore, plot A had a much less soil moisture content. But this decreased water level could be directly effected by the weather conditions. 8. The relationship between the bearing capacity and the soil moisture content were directly inversely proportional. It can be assumed that the occurence of soil creaks is limited by the soil moisture content. Therefore, the greater the progress of the surface creaks resulted in a greater bearing capacity. So, tast plot A with a greater amount of surface cracks than the other test plots resulted in a greater bearing capacity. But, the bearing capacity at the harvest season could be effected by the drainage during the intermediate drainage period and by the weather conditions. 9. Comparing the production of the test plots to the ord. plot; there was an increased value of 840kg for plot A, 755kg for plot B and 695kg for the ord. plot in the rough rice. Therefore, plot A had an increase of 20% over the ordinary plot. The possibility of producing double crops was investigated. The effects on barley production in the test plots showed a value of 367kg per 10 acres, which substantiated the possibility of double crops because that value showed an increased value over the average yearly yield for those uplands. 10. So as a result, it can be recommended that by including a drain pipe system with the optimum conditions of an (80cm centimeter) depth and a (l0m) spacing will have a definite positive effect on the over all production capacity and quality of wetpaddy fields.

  • PDF

Study on the Rice Yield Reduction and Over head Flooding Depth for Design of Drainage System (배수 설계를 위한 벼의 관수심 및 관수피해율에 관한 연구)

  • 김천환;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.4
    • /
    • pp.69-79
    • /
    • 1982
  • The objective of this study is to contribute to drainage planning in the most realistic and economical way by establishing the relationship between rice yield reduction and overhead flooding by muddy water of each growth stage of paddy, which is the most important factor in determining optimum drainage facilities. This study was based on the data mainly from the experimental reports of the Office of Rural Development of Korea, Reduction Rate Estimation for Summer Crops, published by Ministry of Agriculture and Forestry of Japan and other related research documenta- tion. The results of this study are summarized as follows 1. Damages by overhead flooding are highest in heading stage and have the tendency of decrease in the order of booting stage, panicle formation stage, tillering stage, and stage just after transplanting. Damages by overhead flooding of each growing stage are as follows: a) It is considered that overhead flooding just after transplanting gives a little influence on plant growth and yield because the paddy has sufficient growth period from floo ding to harvest time. b) Jt is analyzed that according to the equation y=11 12x 0.908 which is derived from this study, damages by overhead flooding during tillering stage for 1, 2, 3 successive days are 11.1 %, 20.9%, and 30.2% respectively. c) Damages by overhead flooding after panicle formation stage are very serious because recovering period is very short after damage and ineffective tillering is much. Acc- ording to the equation y=9. 58x+10. Ol derived from this study, damages by overhead flooding fal 1,2,3,5 successive days are 19.6%, 29.2%, 38.8%, 57.9% respectively. d) Booting stage is the very important period in which young panicle has grown up almost completely and the number of glumous flower is fixed since reduction division takes place in the microspore mother cell and enbryo mother cell. According to the equation y=39. 66x 0.558 derived from this study, damages by overhead floodingfor 0.5, 1, 3, 5 successive days are 26.9%, 39.7%, 72. 2% and 97.4%, respectively. Therefore, damages by overhead flooding is very serious during the hooting stage. e) When ear of paddy emerges, flowering begins on that day or the next day; when paddy flowers, fertilization will be completed 2-3 hours after flowering. Therefore overhead flooding during heading stage impedes flowering and increases sterilizing percentage. From this reason damages of heading stage are larger than that of booting stage. According to the equation y-41 94x 0.589 derived from this study, damages by overhead flooding for 0.5, 1, 3, 5, successive days are 27.9%, 63.1 %, 80.1%, and 100% 2. Considering that temperature of booting stage is higher than that of beading stage and plant height of booting stage is ten centimeters shorter than that of heading stage, booting stage should be taken as a critical period for drainage planning because possi- bility of damage occurrence in booting stage is larger than that of heading stage. There-fore, it is considered that booting stage should be taken as critical period of paddy growth for drainage planning. 3. Overhead flooding depth is different depending on the stage of growth. In case, booting stage is adopted as design stage of growth for drainage planning, it is conside red that the allowable flooding depth for new varieties and general varieties are 70cm and 80cm respectively. 4. Reduction Rate Estimation by Wind and Flood for Rice Planting of the present design criteria for drainage planning shows damage by overhead flooding for 1 to 2, 3 to 4, 5 to 7 consecutive days; damages by overhead flooding varies considerably over several hours and experimental condition of soil, variety of paddy, and climate differs with real situation. From these reasons, damage by flooding could not be estimated properly in the past. This study has derived the equation which shows damages by flooding of each growth stage on an hourly basis. Therefore, it has become possible to compute the exact damages in case duration of overhead flooding is known.

  • PDF

Status of Farmers' Application Rates of Chemical Fertilizer and Farm Manure for Major Crops (주요(主要) 논·밭 작물(作物)에 대한 농가시비(農家施肥) 실태(實態))

  • Park, Baeg-Gyoon;Jeon, Tae-Ha;Kim, Yoo-Hak;Ho, Qyo-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.238-246
    • /
    • 1994
  • Rate of conventional allpication of chemical fertilizer and farm manure were surveyed for 23 crops and 13,259 farms on paddy and upland fields in 1992. 1. Farmers have applied fertilizers more than optimum levels on vagetable crops. Based on the optimum levels of N, P and K, the excess ratios of N, P, K fertilization were 40%, 138%, and 53% in vagetable crops and 38%, 7%, and 0% in field crops, respectively. 2. Among provinces, the fertilizer application for paddy rice was higher in Chung-nam and Jeon-buk, which have had higher yield compared to other provinces. And that for red pepper was higher in Kang-won, Jeon-nam, Jeon-buk, Kyeong-nam, Kyeong-buk, and for chinese cabbage in Kang-won and Chung-nam. 3. The fertilizers rates at a chief producing districts of crops(CPD) were higher in vagetable crops than in field crops. 4. Compared with total fertilizer levels of open culture, excess fertilizers in plastic house were 5.9kg/10a(21%) of nitrogen, 8.7kg/10a(52%) of phosphorus and 7.1kg/10a(34%) of potasium. In chemical fertilizer application, fertilizer levels of sweet corn, red papper, tomato and lettuce were higher in plastic house, while those of cucumber, strawberry, radish, chinese cabbage were higher in open culture. 5. Ratio of farmers who applied farm manures was below 60 % on field crops and 69~100% on vagetable crops. 6. The compound fertilizer for paddy rice(21-17-17) was applied on all the crops and its application rate was the highest in all the crops except for paddy rice(single cropping), malting barley, soybean, sesame.

  • PDF

Soil Incorporated and Soil Surface Treatment of Herbicides before Transplanting of Paddy Rice (제초제의 수도 이앙전 토양혼화 및 토양표면 처리에 관한 연구)

  • Ryang Whan Seung
    • Korean journal of applied entomology
    • /
    • v.12 no.2
    • /
    • pp.63-70
    • /
    • 1973
  • Weed control tests with 6 herbicides which seem to have selectivity of absorption by roots of rice were carried out by the rate of application, the depth of incorporation and the time of application in comparison with the after transplanting treatment of MO in SiCL soil. Soil-incorporated treatment of Ronstar, Saturn, TOK and Saturn·5 were applied before transplanting and soil surface treatment of Machete, PCP and MON·0385 were applied. The results are summarized as follows: 1. Initial crop injury and growth Soil surface treatment before transplanting of PCP of 1,000g ai/10a caused heavy initial injury, which was recovered from by about 50 days after application. Saturn-S at 4kg prod.110a caused slight crop injury sectionally, which was soon recovered from. And little crop injury was caused by other treatments. 2. Effect in weed control Excellent weed control of 90 to 97.7 percent was obtained, when measured 27 days after transplanting, by all the treatments. More than 90 percent weed control was maintained for about 73 days after transplanting by all the treatments of Ronstar and Saturn-S of 3 to 4kg prod./10a. The treatments of MON-0385 of 175g ai/10a and TOK of 280g ai/10a showed somewhat poor weed control. 3. Yield No reduction of yield was observed at all the plots except the non·weeded plot at which 11.4 percent yield reduction was observed compared with the hand weeding plot. The yield was increased by the 1 DBT and 2 DBT treatments of Machete of 210g ai/10a, the treatments of Ronstar of 60g ai/10a, when incorporated to the depth of 2.5 and 12cm, the incorporation treatment of Saturn-S of 3kg prod./10a and 1 DBT treatment of MON-0385 of 175g ai/10a.

  • PDF

Grain Yield and Nitrogen Use Efficiency due to Long-Term Fertilization in Paddy Rice (동일비료(同一肥料) 장기운용(長期連用)에 따른 벼의 수량과 질소이용효율(窒素利用效率))

  • Yun, Eul-Soo;Choe, Zhin-Ryong;Jung, Yeun-Tae;Park, Kyeong-Bae;Lee, Jae-Saeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.109-114
    • /
    • 1999
  • This study was carried out to obtain some information on the sustainability of paddy rice through the long-term variation of nitrogen use efficiency. The experiment was conducted during 30-year with the same amount of N, P, K and compost at Milyang, southern part of Korea. The results were as follows. Grain yield was increased significantly in the plots of compost incorporation only. However, yield productivity was decreased slightly in the plots with nil and unbalanced fertilization. The effects of rice straw compost on grain yield was not clear at the early crop years but was shown slightly at the late period of the experimental. The grain yield in the plots of compost incorporation at 30th crop year was come to about 80% of NPK plots. The amount of nitrogen uptaken by rice plant was the highest as $167kg\;ha^{-1}$ in NPK plus compost incorporation. Recovery efficiency)($RE_N$) was higher as 0.48~0.74 in compost incorporation plots than in other plots of balanced and unbalanced application. Average agronomic efficiency($AE-N$) and partial factor productivity from N fertilizer applied($PFP_N$) during 30 crop years in NPK plots was 12.8 kg/kg N and 37.7 kg/kg N, respectively, and difference of $AE-N$ and $PFP_N$ shown as indigenous soil nitrogen supply(INS) was higher as 28.4 kg/kg N in NPK + compost plot than NPK plot and was widened at the late period of experiment.

  • PDF

Diversity and Antimicrobial Activity of Actinomycetes Isolated from Rhizosphere of Rice (Oryza sativa L.) (벼 근권에서 분리한 방선균의 다양성과 항균 활성)

  • Lee, Hye-Won;Ahn, Jae-Hyung;Weon, Hang-Yeon;Song, Jaekyeong;Kim, Byung-Yong
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.371-378
    • /
    • 2013
  • Various microorganisms live in soil, of which those colonizing rhizosphere interact with nearby plants and tend to develop unique microbial communities. In this study, we isolated diverse actinomycetes from rhizosphere of rice (Oryza sativa L.) cultivated in fertilized (APK) and non-fertilized (NF) paddy soils, and investigated the diversity and antimicrobial activity of them. Using four kinds of selective media, 152 isolates were obtained from the soil samples and identified by determining 16S rRNA gene sequence. All of the isolates showed 99.0%~100.0% similarities with type strains and were classified into six genera: Dactylosporangium, Micromonospora, Kitasatospora, Promicromonospora, Streptomyces and Streptosporangium. Most of the isolates, 143 isolates, were classified into the genus Streptomyces. Additionally, many isolates had antimicrobial activity against plant pathogens, especially Magnaporthe oryzae (rice blast pathogen) in fungi. These findings demonstrated that rice rhizosphere can be a rich source of antagonistic actinomycetes producing diverse bioactive compounds.

Effects of Rapeseed Cake Application at Panicle Initiation Stage on Rice Yield and N-use Efficiency in Machine Transplanting Cultivation (채종유박(菜種油粕) 수비시용(穗肥施用)이 벼의 질소이용효율(窒素利用效率)과 수량(收量)에 미치는 영향(影響))

  • Kang, Seung-Weon;Yoo, Chul-Hyun;Yang, Chang-Hyu;Han, Sang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.272-279
    • /
    • 2002
  • A field experiment was conducted to investigate the effect of N-use efficiency and rice yield by rapeseed cake(organic fertilizer) application at panicle initiation stage in machine transplating cultivation from 1999 to 2000. The rice yield increased by 4% in "50% rapeseed cake application", by 2% in "30% rapeseed cake application" at panicle initiation stage, respectively. Amount of fertilizer N uptake was high according to increasing amount of rapeseed cake application at panicle initiation stage compared with conventional treatment, but percentage recovery of fertilizer N was higher in 30% rapeseed cake application than in 50% rapeseed cake application at panicle initiation stage. Thus, this result was thought that there was more adventageous in 30% rapeseed cake application than 50% rapeseed cake application at panicle initiation stage in the fertilizer reduction or N-use efficiency respects in rice paddy.