• Title/Summary/Keyword: Paddy rice soil

Search Result 1,048, Processing Time 0.03 seconds

Studies on the Effect of Liming for the Yield Components of Paddy Rice (석회의 시용이 수도의 수량구성요소에 미치는 영향에 관한 연구)

  • 오왕근;박찬호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.3
    • /
    • pp.13-20
    • /
    • 1979
  • The use of liming material raised soil pH. This brought about a decrease in panicle number per hill. but an increase in the number of grains per panicle in pot cultured paddy production. It also improved grain maturity and thousand grain weight. .An effective control of such contradictory effect of liming material would be one way to increase the paddy production in actual field.

  • PDF

Detection Techniques for Greenhouse Area on Paddy Fields Using Landsat TM Images (Landsat TM 영상을 이용한 논지역 내 비닐하우스 면적 추정)

  • Jung In-Kyun;Park Geun-Ae;Jang Cheol-Hee;Kim Seong-Joon
    • KCID journal
    • /
    • v.8 no.2
    • /
    • pp.45-54
    • /
    • 2001
  • A plenty of wastes by greenhouse cultivation affect soil and water pollution much more than those by rice cultivation in paddy field. The greenhouse on paddy field has been increased dramatically, however their physical information such as the location an

  • PDF

Geochemical Behavior of Metals in the Contaminated Paddy Soils around Siheung and Deokeum Mines through Laboratory Microcosm Experiments (실내 microcosm실험에 의한 시흥광산 및 덕음광산 주변 오염 논토양내 중금속의 지구화학적 거동 연구)

  • 김정현;문희수;안주성;김재곤;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • Seasonal variations in vertical distributions of metals were investigated in the contaminated paddy soils around Siheung Cu-Pb-Zn and Deokeum Au-Ag mines. Geochemical behavior of metals was also evaluated with respect to redox changes during the cultivation of rice. Two microcosms simulating the rice-growing paddy field were set up in the laboratory. The raw paddy soils from two sites showed differences in mineralogy, metal concentrations and gecochemical parameters, and it is suggested that high proportions of exchangeable fractions in metals may give high dissolution rates at Deokeum. In both microcosms of Siheung and Deokeum, redox differences between surface and subsurface of paddy soils were maintained during the flooded period of 18 weeks. Siheung soil had neutral to alkaline pH conditions, while strongly acidic conditions and high Eh values were found at the surface soil of Deokeum. The concentrations of dissolved Fe and Mn were higher in the subsurface pore waters than in interface and upper waters from both microcosms, indicating reductive dissolution under reducing conditions. On the contrary, dissolved Pb and Zn had high concentrations at the surface under oxidizing conditions. From the Siheung microcosm, release of dissolved metals into upper waters was decreased. presumably by the trap effect of Fe- and Mn-rich layers at the interface. However, in the Deokeum microcosm, significant amounts of Pb and Zn were released into upper water despite the relatively lower contents in raw paddy soil, and seasonal variations in the chemical fractionation of metals were observed between flooded and drained conditions. Under acidic conditions, rice may uptake high amounts of metals from the surface of paddy soils during the flooded periods, and increases of exchangeable phases may also increase the bioavailability of heavy metals in the drained conditions.

Characterizations of Yields and Seed Components of Sesame (Sesamum indicum L.) as Affected by Soil Moisture from Paddy Field Cultivation

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sanghun;Kim, Sung-Up;Oh, Eunyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.369-382
    • /
    • 2017
  • Accurate and optimal water supply to cereal crop is critical in growing stalks and producing maximum yields. Recently, upland crops are cultivated in paddy field soils to reduce overproduced rice in Korea. In order to increase productivity of cereal crops in paddy fields which have poor percolation and drainage properties, it is necessary to fully understand crop response to excessive soil water condition and management of soil drainage system in paddy field. The objectives of this study were to investigate effects of excessive soil water to sesame growth and to quantify stress response using groundwater levels. Two cultivars of sesame were selected to investigate; Gunbak and Areum. These sesames were planted in paddy fields located in Miryang, Gyeongnam with different soil drainage levels and drainage systems. The experiment site was divided into two plots by drainage class; very poorly and somewhat poorly drained. Two different drainage systems were applied to alleviate excessive soil water in each plot: open ditch and pipe drainage system. Soil water contents and groundwater levels were measured every hour during growing season. Pipe drainage system was significantly effective to alleviate wet injury for sesame in paddy fields. Pipe drainage system decreased average soil moisture content and groundwater level during sesame cultivation. This resulted in greater yield and lignan contetns in sesame seeds than ones from open ditch system. Comparison between two cultivars, Gunbak had greater decrease in growth and yield by excessive soil water and high groundwater level than Areum. Seed components (lignan) showed decrease in seeds as soil water increased. When soil moisture content was greater than 40%, lignan content tended to decrease than ones from less soil moisture content. Based on these results, pipe drainage system would be more effective to reduce wet injury to sesame and increase lignan component in paddy field cultivation.

Paddy Rice Growth Yield as Affedted by Incorporation of Green Barley and Chinese Milkvetch (자운영 및 보리 재배 혼입처리에 따른 벼의 생육과 수량)

  • Sohn, Bo-Kyoon;Cho, Ju-Sik;Lee, Do-Jin;Kim, Young-Ju;Jin, Seo-Young;Cha, Gyu-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.156-164
    • /
    • 2004
  • This study was conducted to evaluate the effect of the application of green manure in the form of either green barley and Chinese milkvetch in reducing the amounts of N fertilizers and conventional fertilizers needed for paddy rice. Prior to rice transplanting, the green barley and Chinese milkvetch as a green manure produced respectively $668kg\;10a^{-1}$ and 3,492kg\;$10a^{-1}$ in fresh shoot weight basis. Calculated nitrogen content from harvested green manures was 3.9 and $17.8kg\;10a^{-1}$, respectively. Plant height and tiller number of rice increased when two kinds of green manure incorporated into soil. Above mentioned parameters also increased with increasing amounts of N fertilizers at both ear formation and heading stage of rice. Rice grain number was not affected by green manures treatment but increased when N fertilizers were applied. Although rice panicle and grain number increased with green manure treatments and fertilizer applications, whereas the percentage of ripened grain decreased. Chinese milkvetch with additional N fertilizer applications increased brown rice yield from 1 to 5% compared to rice yields in plots where non-green manure with the conventional amount of fertilizer application was applied. Rice treated with Chinese milkvetch and 30% of the conventional N fertilizer rate yielded the same as rice fertilized conventionally. During the rice growing season, $NH_4-N$ content of paddy soil was higher in green manures treatment than non-green manure one. Average $NH_4-N$ content in paddy soil drastically decreased after heading stage below $5.7mg\;kg^{-1}$ in non-green manure treated plots. While on the other, $NH_4-N$ content in soil slowly decreased in plots those were treated with green manures at harvesting stage, average $NH_4-N$ content was still greater than $5.5mg\;kg^{-1}$. Nitrogen content of rice shoot and brown rice seed was higher in green manure treatment.

Effects on Rice Growth of System of Rice Intensification under No-till Paddy in Korea

  • Meas, Vannak;Shon, Daniel;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.91-97
    • /
    • 2011
  • The objectives of this research were to investigate the system of rice intensification (SRI) on early growth, grain yield, and yield components under Chinese milk vetch residue-mulched no-tillage cropping systems at silt loam soil. The field was prepared as a split-plot design with three replications, main plots consisted of Dongjinbyeo, and Sobibyeo as a cultivar, and subplots consisted of $10{\times}10$ cm, $20{\times}20$ cm, and $30{\times}30$ cm as a planting density. Weed infestation during rice growing season was more severe in wider planting density $30{\times}30$ at 35 days after transplanting (DAT), and $20{\times}20$ cm at 95 DAT in both Sobibyeo and Dongjinbyeo. The maximum plant height was recorded in Sobibyeo compared with Dongjinbyeo, $10{\times}10$ cm and $20{\times}20$ cm planting density compared with $30{\times}30$ cm from 20 DAT until 60 DAT. Among the three planting densities, SPAD values were significantly greater in planting density of $20{\times}20$ cm both in Sobibyeo and Dongjinbyeo followed by $30{\times}30$ cm compared with closer planting density of $10{\times}10$ cm. The lowest grain yield was observed in wider planting density of $30{\times}30$ in both Sobibyeo and Dongjinbyeo due to lower number of panicle per unit area. Our findings suggest that optimum planting density for SRI in no-tillage paddy was $20{\times}20$ cm and it should be useful the systems to small-scale rice farmers in Korea as a sustainable farming system.

Marginal App1ication Time of Pig Manure before Rice Transplanting in Paddy Field (벼 안전생산을 위한 돈분 시용 한계시기)

  • Cho, Hyun-Suk;Chang, Ki-Woon;Kim, Chung-Guk;Sea, Jong-Ho;Kim, Si-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • One of the methods to solve the problems of over-produced livestock manure, which are produced 34 million tons or more every year in Korea, is the using of these organic resources in rice cultivation. Experiments were carried out to find our the marginal application rime of pig manure without the injury for rice cultivation, dry and compost pig manure were incorporated separately in paddy field on several different time before rice transplanting. lt could be concluded that not only both manures were able to incorporate anytime before transplanting without the injury to rice growth, but also application of CPM and DPM to the rice paddy soil can be possible. However, 50% of the recommended application of chemical fertilizer was possible when the pig manure was incorporated in the paddy field for rice production.

  • PDF

Studies on the Consumptive Use of Irrigated Water in Paddy Rice (수도 품종간의 필요수량 차이에 관한 연구)

  • 김시원;오완석;김선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.2
    • /
    • pp.35-44
    • /
    • 1981
  • This experiment was conducted to find out the consumptive use of irrigated water for calculation of duty water in paddy rice. Tall statured Japonica rice varieties, Nongbaek (early), Jinheung (medium) and Akibare (late), and short statured Tongil typed varieties, Josaeng Tongil(early), Suweon 264 (medium) and Suweon 258(late) were planted on the experimental farm of Kon-Kuk University in 1979. The results obtained in this study were as follows: 1. During the experimental period, the daily mean temperature was almost similar, the relative humidity was higher as much as 2.8%, the amount of rain fall was 100mm less and the pan evaporation was 70mm less compared with those of 30 years average, respectively. 2. The paddy soil was silty loam, which was suitable for the rice cultivation. 3. Varietal differences were find out for plant height, culm length, number of tillers, number of panicles, heading date, matured grain ratio, 1000-grain weight and rough rice yield. This difference might he the cause of varietal difference of the consumptive use of irrigated water during the rice growing period. 4. The evapotranspiration was gradually increased after transplanting and showed the peak from booting to heading stage of rice varieties. The average evapotranspiration through the whole growing period was 5.67-5. 80mm/day for tall statured Japonica varieties, and 5.99-6. 39mm/day for short statured Tongil typed varieties. 5. The ratio of evapotranspiration to pan-evaporation through the whole growing period was 1.49-1.50 for Japonica varieties, and 1.60-1.66 for Tongil typed varies. 6. Average amount of percolation in paddy field was 3. 62mm/day through the whole growing period of rice plant. 7. K-value in Blaney & Criddle formula was 0.94-0.98 for Japonica varieties and 1.02-1.08 for Tongil typed varieties, and coefficient consumptive water use (Kc-value) was 0.95-1.02 for Japonica varieties and 1.04-1.12 for Tongil typed varieties in this study. The modified coefficient for consumptive water use, which was calculated from data collected through the country including this study, was as follows;

  • PDF

Effects of Continuous Application of Green Manures on Microbial Community in Paddy Soil

  • Kim, Sook-Jin;Kim, Kwang Seop;Choi, Jong-Seo;Kim, Min-Tae;Lee, Yong Bok;Park, Ki-Do;Hur, Seonggi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.528-534
    • /
    • 2015
  • Green manure crops have been well recognized as the alternative for chemical fertilizer, especially N fertilizer, because of its positive effect on soil and the environment. Hairy vetch and green barley are the most popular crops for cultivation of rice in paddy field. This study was conducted to evaluate effects of hairy vetch and green barley on soil microbial community and chemical properties during short-term application (three years). For this study, treatments were composed of hairy vetch (Hv), green barley (Gb), hairy vetch + green barley (Hv+Gb), and chemical fertilizer without green manure crops (Con.). Hv+Gb treatment showed the highest microbial biomass among treatments. Principal component analysis (PCA) showed that PC1 (73.0 %) was affected by microbial biomass and PC2 (21.5 %) was affected by fungi, cy19:0/18:$1{\omega}7c$ (stress indicator). Combined treatment with hairy vetch and green barley could be more efficient than green manure crop treatment as well as chemical fertilizer treatment for improvement of soil microorganisms.

Long-term Application Effects of Fertilizers and Amendments on Changes of Soil Organic Carbon in Paddy Soil (논 토양의 유기탄소 변동에 관한 비료와 개량제의 장기연용 효과)

  • Kim, Myung-Sook;Kim, Yoo-Hak;Kang, Seong-Soo;Yun, Hong-Bae;Hyun, Byung-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1108-1113
    • /
    • 2012
  • The changes of soil organic carbon (SOC) content in paddy soils (sandy loam) were assessed from data of the 59 years fertilization plots in which the continuous rice cropping experiment started in 1954. The treatments were no fertilization(no fert.), NPK fertilization (N, NPK), NPK plus rice straw compost (NPK+C), and NPK plus rice straw compost, silicate fertilizer and lime (NPK+CLS). After 41 years, SOC content in NPK+C and NPK+CLS treatment in surface soils (0~15 cm) reached at the highest, followed by maintaining a plateau level for 8 years. After 51 years, they showed a tendency to decrease. Peak concentrations of soil organic carbon were $20.1g\;kg^{-1}$ in NPK+CLS, $19.1g\;kg^{-1}$ in NPK+C, $13.3g\;kg^{-1}$ in NPK, $11.9g\;kg^{-1}$ in N, and $11.6g\;kg^{-1}$ in control. Dissolved organic carbon(DOC) contents in surface soil solution were about 2.3 times higher in NPK+C than that in NPK+CLS. Therefore, SOC in subsurface soil(15~30 cm) was greater in NPK+C than the other treatments. These results indicate that continuous application of rice straw compost and silicate fertilizer affected significantly on the level of SOC in surface soils, subsurface soils, and soil solutions. Thus, the combined applications of NPK fertilizers with organic compost and silicate as a soil amendment are recommended as the best fertilization practice for soil carbon accumulation, environment conservation, and enhancement of soil fertility status in the continuous rice cropping system.