DOI QR코드

DOI QR Code

Long-term Application Effects of Fertilizers and Amendments on Changes of Soil Organic Carbon in Paddy Soil

논 토양의 유기탄소 변동에 관한 비료와 개량제의 장기연용 효과

  • Received : 2012.11.26
  • Accepted : 2012.12.03
  • Published : 2012.12.31

Abstract

The changes of soil organic carbon (SOC) content in paddy soils (sandy loam) were assessed from data of the 59 years fertilization plots in which the continuous rice cropping experiment started in 1954. The treatments were no fertilization(no fert.), NPK fertilization (N, NPK), NPK plus rice straw compost (NPK+C), and NPK plus rice straw compost, silicate fertilizer and lime (NPK+CLS). After 41 years, SOC content in NPK+C and NPK+CLS treatment in surface soils (0~15 cm) reached at the highest, followed by maintaining a plateau level for 8 years. After 51 years, they showed a tendency to decrease. Peak concentrations of soil organic carbon were $20.1g\;kg^{-1}$ in NPK+CLS, $19.1g\;kg^{-1}$ in NPK+C, $13.3g\;kg^{-1}$ in NPK, $11.9g\;kg^{-1}$ in N, and $11.6g\;kg^{-1}$ in control. Dissolved organic carbon(DOC) contents in surface soil solution were about 2.3 times higher in NPK+C than that in NPK+CLS. Therefore, SOC in subsurface soil(15~30 cm) was greater in NPK+C than the other treatments. These results indicate that continuous application of rice straw compost and silicate fertilizer affected significantly on the level of SOC in surface soils, subsurface soils, and soil solutions. Thus, the combined applications of NPK fertilizers with organic compost and silicate as a soil amendment are recommended as the best fertilization practice for soil carbon accumulation, environment conservation, and enhancement of soil fertility status in the continuous rice cropping system.

1954년부터 운영해온 장기 연용 포장은 벼를 경작하는 체계에서 토양의 비옥도를 향상하기 위한 방안을 모색하고자 수행되었다. 59년 동안의 시험에서 볏짚퇴비의 시용은 토양의 유기탄소 함량을 41년 이후에 최대 $19{\sim}20g\;kg^{-1}$까지 도달하게 하였고, 볏짚퇴비를 시용하지 않은 것보다 표토에서는 1.4배, 심토에서는 2배까지 높아지게 하였다. 또한 처리구별로 토양용액중의 수용성유기탄소의 함량도 달라졌는데, 퇴비구에서 가장 높았고, 종합개량구에서는 퇴비구의 1/2 수준으로 환경으로 유출되는 수용성 유기탄소의 양이 감소하였다. 화학비료와 볏짚퇴비, 그리고 토양개량제인 규산질비료를 59년 동안 시용하였을 때, 토양의 pH, 유효인산, 치환성 양이온, 유효규산 함량 모두 증가하였다. 따라서, 무기질 비료와 유기질비료, 그리고 토양개량제인 규산질비료를 혼용하는 것은 토양의 탄소축적을 증대시키고, 환경으로 유출될 수 있는 수용성탄소의 함량을 감소시키며, 토양비옥도의 질을 향상시켜 작물을 안정적으로 생산할 수 있는 가장 적합한 방법이라 생각된다.

Keywords

References

  1. Bronson, K.F., K.G. Gassman, R. Wassmann, D.C. Olk, M. van Noordwijk, and D.P. Garrity. 1977. Soil carbon dynamics in different cropping systems in principal ecoregions of Asia. p. 35-57. In R. La et al. (ed.) Management of carbon sequestration in soil. CRC Press, Boca Raton, FL.
  2. Carter, M.R. 2002. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functioning. Agron. J. 94:34-87.
  3. Cai, Z.C. and S.W. Qin. 2006. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma. 136:708-715. https://doi.org/10.1016/j.geoderma.2006.05.008
  4. Christensen, B. and A.E. Johnston. 1997. Soil organic matter and soil quality: Lessons learned from long-term experiments at Askov and Rothamsted. p. 399-430. In E.G. Gregorich and M.R. Carter (ed.) Soil quality for crop production and ecosystem health. Dev. Soil Sci. 25. Elsevier, Amsterdam.
  5. Falloon, P. and P. Smith. 2002. Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use Manage. 18:101-111.
  6. Falloon, P. and P. Smith. 2003. Accounting for changes in soil carbon under the Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in model projections. Soil Use Manage. 19(3):265-269. https://doi.org/10.1111/j.1475-2743.2003.tb00313.x
  7. Gonet, S.S. and B. Debska. 2006. Dissolved organic carbon and dissolved nitrogen in soil under different fertilization treatments. Plant Soil Environ. 52:55-63.
  8. Jonsson, A., Algestern, G., Bergstrom, A.K., Gishop, K., Sobek, S., Tranvik, L.J., Jansson, M. 2007. Integrating aquatic carbon fluxes in a boreal catchment carbon budget. J. Hydrol. 334:141-150. https://doi.org/10.1016/j.jhydrol.2006.10.003
  9. Jung, W.K. and Y.H. Kim. 2006. Soil organic carbon determination for calcareous soils. Korean J. Soil Sci. Fert. 39(6):396-401.
  10. Katoh, M., J. Murase, A. Sugimoto, and M. Kimura. 2005. Effect of rice straw amendment on dissolved organic and inorganic carbon and cationic nutrients in percolating water from a flooded paddy soil: A microcosm experiment using C-13-enriched rice. Org. Geochem. 36:803-811. https://doi.org/10.1016/j.orggeochem.2004.12.006
  11. Kim, M.S., W.I. Kim, J.S. Lee, G.J. Lee, G.L. Jo, M.S. Ahn, S. C. Choi, H.J. Kim, Y.S. Kim, M.T. Choi, Y.H. Moon, B.K. Ahn, H.W. Kim, Y.J. Seo, Y.H. Lee, J.J. Hwang, Y.H. Kim, and S.K. Ha. 2010. Long-term monitoring study of soil chemical contents and quality in paddy fields. Korean J. Soil Sci. Fert.43(6):930-936.
  12. Lugato, L., K. Paustian, and L. Giardini. 2007. Modelling soil organic carbon dynamics in two long-term experiments of north-eastern Italy. Agric. Ecosyst. Environ. 120:423-432. https://doi.org/10.1016/j.agee.2006.11.006
  13. NIAST (National Institute of Agricultural Science and Technology). 2000. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  14. NIAST. 2006. Fertilizer Recommendation for crops (revision). National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  15. Powlson, D.S. and D.C. Olk. 2000. Long-term soil organic matter dynamics. p. 49-64. In G.J.D. Kirk and D.C. Olk (ed.) 2000. Carbon and nitrogen dynamics in flooded soils. Los Banos, Philippines. 19-22 Arp. 1999. IRRI, Makati City, Philippines.
  16. Reichardt, W., K. Inubushi, and J. Tiedje. 2000. Microbial processes in C and N dynamics. p. 101-146. In G.J.D. Kirk and D.C. Olk (ed.) 2000. Carbon and nitrogen dynamics in flooded soils. IRRI, Makati city, Philippines.
  17. Skjemstad, J.O. L.R. Spouncer, B. Cowie, and R.S. Swift. 2004. Calibration of the Rothamsted organic carbon turnover model(RotC ver. 26.3), using measurable soil organic carbon pools. Aust. J. Soil Res. 42(1):79-88. https://doi.org/10.1071/SR03013
  18. Veum, K.S., K.W. Goyne, P.P. Motavalli, and R.P. Udawatta. 2009. Runoff and dissolved organic carbon loss from a paired-watershed study of three adjacent agricultural watersheds. Agric. Ecosyst. Environ. 130:115-122. https://doi.org/10.1016/j.agee.2008.12.006
  19. Wang, L., C. Song, Y. Song, Y. Guo, X. Wang, and X. Sun. 2010. Effects of reclamation of natural wetlands to a rice paddy on dissolved carbon dynamics in the Sanjiang Plain, Northeastern China. Ecol. Eng. 36:1417-1423. https://doi.org/10.1016/j.ecoleng.2010.06.021
  20. Yoon, J.H. 2004. Review and Discussion on Development of Soil Quality Indicators. Korean J. Soil Sci. Fert. 37:192-198.
  21. Zhang, M.K. and Z.L. He. 2004. Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China. Geoderma. 118:167-179. https://doi.org/10.1016/S0016-7061(03)00191-5

Cited by

  1. Analysis of Community Structure of Metabolically Active Bacteria in a Rice Field Subjected to Long-Term Fertilization Practices vol.46, pp.6, 2013, https://doi.org/10.7745/KJSSF.2013.46.6.585
  2. Diversity and Antimicrobial Activity of Actinomycetes Isolated from Rhizosphere of Rice (Oryza sativa L.) vol.17, pp.4, 2013, https://doi.org/10.7585/kjps.2013.17.4.371
  3. Changes of Chemical Characteristics of Soil Solution In Paddy Field from Fifty-Eight Years Fertilization Experiments vol.48, pp.1, 2015, https://doi.org/10.7745/KJSSF.2015.48.1.022
  4. Decadal Changes in Subsoil Physical Properties as Affected by Agricultural Land Use Types in Korea vol.36, pp.4, 2018, https://doi.org/10.11626/KJEB.2018.36.4.567