• 제목/요약/키워드: Pad Particle

검색결과 57건 처리시간 0.033초

비점오염저감시설인 침투도랑과 여과형 시설내 침강지 퇴적의 물리화학적 특성 분석 (Physico-Chemical Characteristics of Sediment in Sedimentation Tank of Infiltration Trench and Filtration System)

  • 이소영;이은주;김철민;;손영규;김지형;김이형
    • 한국습지학회지
    • /
    • 제9권3호
    • /
    • pp.35-42
    • /
    • 2007
  • 최근 환경부의 환경정책은 수질오염총량관리제도의 전국적인 확대를 앞두고 다양한 토지이용에서 발생되는 비점오염물질의 관리를 추진하고 있다. 이러한 환경정책의 변화와 함께 4대강 수계에 비점오염원 시범사업을 통해 다양한 비점오염저감시설의 효율평가 및 시설의 유지관리에 대하여 모니터링도 수행하고 있다. 따라서 본 연구는 한강수계에 설치된 비점오염 저감시설 중에서 전처리 시설로 설치되어 있는 침강지 또는 침사지 퇴적물의 물리화학적 성상을 연구함으로써 폐기물로써의 퇴적물 관리에 대한 기초자료를 제시하고자 한다. 일반적으로 비점저감시설의 전처리 시설로 사용되는 침강지는 일정한 체류시간을 제공함으로써 강우유출수내의 입자상 물질을 제거함과 동시에 비점저감시설 내의 여과재 및 침투재의 폐색을 예방하고자 설치되는 전처리 시설이다. 침강지 퇴적물의 물리화학적 특성 연구 결과에 의하면, 일반적으로 Zn과 Cd은 $75{\mu}m$이하의 퇴적물 입도분포에서 입자 표면적으로의 흡착농도가 높은 것으로 나타났다. 중금속 부하량을 살펴본 결과, 입자의 크기가 $425-850{\mu}m$범위 일 경우 중금속 농도가 가장 높게 나타났다. 전체 중금속에 대한 분석 결과, Cu, Zn, Pb의 중금속 함량이 입도분포 $425-850{\mu}m$ 사이에서 30% 이상을 나타내었다. 중금속 중에서 다른 항목에 비하여 Cu, Pb 및 Zn의 함량이 높게 나타났는데, 이는 차량의 타이어와 엔진파트에 이러한 중금속이 많이 함유되어 있기 때문이다. 또한 본 연 구결과 침강지는 퇴적물의 퇴적과 함께 다양한 중금속의 제거가 발생하는 것으로 나타났다.

  • PDF

Comparison of Mutagenic Activities of Various Ultra-Fine Particles

  • Park, Chang Gyun;Cho, Hyun Ki;Shin, Han Jae;Park, Ki Hong;Lim, Heung Bin
    • Toxicological Research
    • /
    • 제34권2호
    • /
    • pp.163-172
    • /
    • 2018
  • Air pollution is increasing, along with consumption of fossil fuels such as coal and diesel gas. Air pollutants are known to be a major cause of respiratory-related illness and death, however, there are few reports on the genotoxic characterization of diverse air pollutants in Korea. In this study, we investigated the mutagenic activity of various particles such as diesel exhaust particles (DEP), combustion of rice straw (RSC), pine stem (PSC), and coal (CC), tunnel dust (TD), and road side dust (RD). Ultra-fine particles (UFPs) were collected by the glass fiber filter pad. Then, we performed a chemical analysis to see each of the component features of each particulate matter. The mutagenicity of various UFPs was determined by the Ames test with four Salmonella typhimurium strains with or without metabolic activation. The optimal concentrations of UFPs were selected based on result of a concentration decision test. Moreover, in order to compare relative mutagenicity among UFPs, we selected and tested DEP as mutation reference. DEP, RSC, and PSC induced concentration-dependent increases in revertant colony numbers with TA98, TA100, and TA1537 strains in the absence and presence of metabolic activation. DEP showed the highest specific activity among the particulate matters. In this study, we conclude that DEP, RSC, PSC, and TD displayed varying degrees of mutagenicity, and these results suggest that the mutagenicity of these air pollutants is associated with the presence of polycyclic aromatic hydrocarbons (PAHs) in these particulate matters.

LIGA 금형몰드를 이용한 Fe-Ni계 나노분말의 초미세 가스베어링 제조 (Manufacturing of Micro Gas Bearing by Fe-Ni Nanopowder and Metal Mold Using LIGA)

  • 손수정;조영상;김대종;김종현;장석상;최철진
    • 한국분말재료학회지
    • /
    • 제19권2호
    • /
    • pp.140-145
    • /
    • 2012
  • This paper describes the manufacturing process of tilting pad gas bearing with a diameter of 5 mm and a length of 0.5-1 mm for power MEMS (Micro Electomechanical Systems) applications. The bearing compacts with nanopowder feedstock were prepared by Ni-metal mold with 2-mold system using LIGA process. The effect of the manufacturing conditions on sintering properties of nanopowder gas bearing was investigated. In this work, Fe-45 wt%Ni nanopowder with an average diameter of 30-50 nm size was used as starting material. After mixing the nanopowder and the wax-based binders, the amount of powder was controlled to obtain the certain mixing ratio. The nanopowder bearing compacts were sintered with 1-2 hr holding time under hydrogen atmospheres and under temperatures of $600^{\circ}C$ to $1,000^{\circ}C$. Finally, the critical batch of mixed powder system was found to be 70% particle fraction in total volume. The maximum density of the sintered bearing specimen was about 94% of theoretical density.

자동차 브레이크 마찰재용 비침상형 육티탄산칼륨의 합성 연구 (Synthesis of Potassium Hexatitanate with Non-Fibrous Shape as a Raw Material for Friction Material in Brake System)

  • 이정주;이나리;피재환;김종영;김정주
    • 한국재료학회지
    • /
    • 제27권3호
    • /
    • pp.132-136
    • /
    • 2017
  • We synthesized potassium hexatitanate, ($K_2Ti_6O_{13}$, PT6), with a non-fibrous shape, by acid leaching and subsequent thermal treatment of potassium tetratitanate ($K_2Ti_4O_9$, PT4), with layered crystal structure. By controlling nucleation and growth of PT4 crystals, we obtained splinter-type crystals of PT6 with increased width and reduced thickness. The optimal holding temperature for the layered PT4 was found to be ${\sim}920^{\circ}C$. The length and width of the PT4 crystals were increased when the nucleation and growth time were increased. After a proton exchange reaction using aqueous 0.3 M HCl solution, and subsequent heat treatment at $850^{\circ}C$, the PT4 crystal transformed into splinter-type PT6 crystals. The frictional characteristics of the friction materials show that as the particle size of PT6 increases, the coefficient of friction (COF) and wear amounts of both the friction materials and counter disc increase.

COG(Chip On Glass)를 위한 ACA (Anisotropic Conductive Adhesives) 공정 조건에 관한 연구 (A Study on the Process Conditions of ACA( Anisotropic Conductance Adhesives) for COG ( Chip On Glass))

  • 한정인
    • 한국재료학회지
    • /
    • 제5권8호
    • /
    • pp.929-935
    • /
    • 1995
  • 구동 IC를 유리기판 위의 Al패드 전극에 연결하는 LCD(Liquid Crystal Display) 모듈을 실장하는 Chip On Glass (COG) 기술을 개발하기 위하여 기존에 잘 알려진 기술 가운데 실제로 적용 가능성이 가장 유망한 이방성 도전 접착제 (ACA, Anisotropic Conductive Adhesives)를 사용한 공정에 대하여 조사하였다. ACA 공정은 본딩 부분에 ACA 수지를 균일하게 분포시키는 공정과 자외선을 조사하여 수지를 경화하여 칩을 실장하는 공정의 2단계로 진행하였다. 칩에 가해준 하중은 2-15kg이었고 칩의 예열 온도는 12$0^{\circ}C$이었다. 이방성 도전체는 Au 또는 Ni이 표면 피막 재료로 사용된 것을 사웅하였으며 전도성 입자의 갯수가 500, 1000, 2000, 4000개/$\textrm{mm}^2$이며 크기가 5, 7, 12$\mu\textrm{m}$이었다. ACA 처리의 결과 입자 크기가 5$\mu\textrm{m}$이고 입자 밀도는 4000개/$\textrm{mm}^2$일 경우가 대단히 낮은 접촉 저항 및 가장 안정된 본딩 특성을 나타냈었다.

  • PDF

The photocatalytic activities of nano-titanium dioxide on the cotton fabrics for self-cleaning properties

  • Metanawin, Siripan;Metanawin, Tanapak;Panutumrong, Praripatsaya;Hathaiwaseewong, Sunee;Chaichalermvong, Tirapong
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.129-137
    • /
    • 2015
  • The study of photocatalysis of nano titanium dioxideon the cotton fabrics have been investigatedthrough self-cleaning properties. The mini-emulsion technique was employed to prepare the encapsulation of titanium dioxide nano particles in polystyrene beads prior used. The mini-emulsion was coated on the cotton fabrics using Pad-dry method.The loading amount of TiO2particles into the mini-emulsion were various from 1%wt to 40%wt. The particles sizes of the TiO2-encapsulated polystyrene mini-emulsion were investigated by dynamic light scattering. It was noticed that the particle size of the mini-emulsion was in the range of 100- 200 nm. The morphology of treated cotton fabrics were investigated using scanning electron microscopy. The crystal structure of TiO2-encapsulated PS mini emulsion which coated on cotton fabrics were examined by X-ray diffraction spectroscopy. In order to investigate the photocatalytic activities of TiO2 through the selfcleaning characteristics of the cotton fabrics, colorant stains were created on the samples. Coffee stains were used as colorant organic stains. The result shown that the coffee stained on the cotton fabrics significantly showed the improving of the self-cleaning properties under UV radiation.

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF