Browse > Article
http://dx.doi.org/10.5487/TR.2018.34.2.163

Comparison of Mutagenic Activities of Various Ultra-Fine Particles  

Park, Chang Gyun (College of Agriculture, Life & Environment Sciences, Chungbuk National University)
Cho, Hyun Ki (College of Agriculture, Life & Environment Sciences, Chungbuk National University)
Shin, Han Jae (KT&G Research Institute)
Park, Ki Hong (National Leading Research Laboratory (Aerosol Technology and Monitoring Laboratory), School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Lim, Heung Bin (College of Agriculture, Life & Environment Sciences, Chungbuk National University)
Publication Information
Toxicological Research / v.34, no.2, 2018 , pp. 163-172 More about this Journal
Abstract
Air pollution is increasing, along with consumption of fossil fuels such as coal and diesel gas. Air pollutants are known to be a major cause of respiratory-related illness and death, however, there are few reports on the genotoxic characterization of diverse air pollutants in Korea. In this study, we investigated the mutagenic activity of various particles such as diesel exhaust particles (DEP), combustion of rice straw (RSC), pine stem (PSC), and coal (CC), tunnel dust (TD), and road side dust (RD). Ultra-fine particles (UFPs) were collected by the glass fiber filter pad. Then, we performed a chemical analysis to see each of the component features of each particulate matter. The mutagenicity of various UFPs was determined by the Ames test with four Salmonella typhimurium strains with or without metabolic activation. The optimal concentrations of UFPs were selected based on result of a concentration decision test. Moreover, in order to compare relative mutagenicity among UFPs, we selected and tested DEP as mutation reference. DEP, RSC, and PSC induced concentration-dependent increases in revertant colony numbers with TA98, TA100, and TA1537 strains in the absence and presence of metabolic activation. DEP showed the highest specific activity among the particulate matters. In this study, we conclude that DEP, RSC, PSC, and TD displayed varying degrees of mutagenicity, and these results suggest that the mutagenicity of these air pollutants is associated with the presence of polycyclic aromatic hydrocarbons (PAHs) in these particulate matters.
Keywords
Air pollution; Ultra-fine particle; Mutagenicity; Ames test;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fang, T., Verma, V., Guo, H., King, L., Edgerton, E. and Weber, R.J. (2014) A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE). Atmos. Meas. Tech., 8, 471-482.
2 Valavanidis, A., Vlachogianni, T., Fiotakis, K. and Loridas, S. (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health, 10, 3886-3907.   DOI
3 Pope, C.A., 3rd, Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K. and Thurston, G.D. (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287, 1132-1141.   DOI
4 Cao, J., Xu, H., Xu, Q., Chen, B. and Kan, H. (2012) Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environ. Health Perspect., 120, 373-378.   DOI
5 Reid, J.S., Koppmann, R., Eck, T.F. and Eleuterio, D.P. (2005) A review of biomass burning emissions, part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys., 5, 799-825.   DOI
6 Ema, M., Naya, M., Horimoto, M. and Kato, H. (2013) Developmental toxicity of diesel exhaust: a review of studies in experimental animals. Reprod. Toxicol., 42, 1-17.   DOI
7 Shen, G. (2017) Mutagenicity of particle emissions from solid fuel cookstoves: a literature review and research perspective. Environ. Res., 156, 761-769.   DOI
8 Matzenbacher, C.A., Garcia, A.L.H., dos Santos, M.S., Nicolau, C.C., Premoli, S., Correa, D.S., de Souza, C.T., Niekraszewicz, L., Dias, J.F., Delgado, T.V., Kalkreuth, W., Grivicich, I. and da Silva, J. (2017) DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro. J. Hazard. Mater., 324, 781-788.   DOI
9 Melki, P.N., Ledoux, F., Aouad, S., Billet, S., El Khoury, B., Landkocz, Y., Abdel-Massih, R.M. and Courcot, D. (2017) Physicochemical characteristics, mutagenicity and genotoxicity of airborne particles under industrial and rural influences in Northern Lebanon. Environ. Sci. Pollut. Res. Int., 24, 18782-18797.   DOI
10 Singh, P., DeMarini, D.M., Dick, C.A., Tabor, D.G., Ryan, J.V., Linak, W.P., Kobayashi, T. and Gilmour, M.I. (2004) Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice. Environ. Health Perspect., 112, 820-825.   DOI
11 Wu, D., Zhang, F., Lou, W., Li, D. and Chen, J. (2017) Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels. Sci. Total Environ., 605-606, 172-179.   DOI
12 Maron, D.M. and Ames, B.N. (1983) Revised methods for the Salmonella mutagenicity test. Mutat. Res., 113, 173-215.   DOI
13 Claxton, L.D., Umbuzeiro Gde, A. and DeMarini, D.M. (2010) The Salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ. Health Perspect., 118, 1515-1522.   DOI
14 McDonald, J.D., Barr, E.B., White, R.K., Chow, J.C., Schauer, J.J., Zielinska, B. and Grosjean, E. (2004) Generation and characterization of four dilutions of diesel engine exhaust for a subchronic inhalation study. Environ. Sci. Technol., 38, 2513-2522.   DOI
15 Lewtas, J. (1993) Complex mixtures of air pollutants: characterizing the cancer risk of polycyclic organic matter. Environ. Health Perspect., 100, 211-218.   DOI
16 Dong, T.T. and Lee, B.K. (2009) Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere, 74, 1245-1253.   DOI
17 Mostafa, A.R., Hegazi, A.H., El-Gayar, M.S. and Andersson, J.T. (2009) Source characterization and the environmental impact of urban street dusts from Egypt based on hydrocarbon distributions. Fuel, 88, 95-104.   DOI
18 Zhang, W., Zhang, S., Wan, C., Yue, D., Ye, Y. and Wang, X. (2008) Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environ. Pollut., 153, 594-601.   DOI
19 DeMarini, D.M. (2004) Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat. Res., 567, 447-474.   DOI
20 Shin, H.-J., Cho, H.G., Park, C.K., Park, K.H. and Lim, H.B. (2017) Comparative in vitro biological toxicity of four kinds of air pollution particles. Toxicol. Res., 33, 305-313.   DOI
21 Snyder, R.D. and Green, J.W. (2001) A review of the genotoxicity of marketed pharmaceuticals. Mutat. Res., 488, 151-169.   DOI
22 Claxton, L.D., Creason, J., Leroux, B., Agurell, E., Bagley, S., Bryant, D.W., Courtois, Y.A., Douglas, G., Clare, C.B., Goto, S., Quillardet, P., Jagannath, D.R., Kataoka, K., Mohn, G., Nielsen, P.A., Ong, T., Pederson, T.C., Shimizu, H., Nylund, L., Tokiwa, H., Vink, G.J., Wang, Y. and Warshawsky, D. (1992) Results of the IPCS collaborative study on complex mixtures. Mutat. Res., 276, 23-32.   DOI
23 Hughes, T.J., Lewtas, J. and Claxton, L.D. (1997) Development of a standard reference material for diesel mutagenicity in the Salmonella plate incorporation assay. Mutat. Res., 391, 243-258.   DOI
24 McClellan, R.O., Brooks, A.L., Cuddihy, R.G., Jones, R.K., Mauderly, J.L. and Wolff, R.K. (1982) Inhalation toxicology of diesel exhaust particles. Dev. Toxicol. Environ. Sci., 10, 99-120.
25 Krause, G., Garganta, F., Vrieling, H. and Scherer, G. (1999) Spontaneous and chemically induced point mutations in HPRT cDNA of the metabolically competent human lymphoblastoid cell line, MCL-5. Mutat. Res., 431, 417-428.   DOI
26 Pope, C.A. (2000) Review: epidemiological basis for particulate air pollution health standards. Aerosol Sci. Technol., 32, 4-14.   DOI
27 Andreae, M.O. and Merlet, P. (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 15, 955-966.   DOI
28 Oanh, N.T., Bich, T.L., Tipayarom, D., Manadhar, B.R., Prapat, P., Simpson, C.D. and Liu, L.J. (2011) Characterization of particulate matter emission from open burning of fice straw. Atmos. Environ., 45, 493-502.   DOI
29 Yang, H.-H., Tsai, C.-H., Chao, M.-R., Su, Y.-L. and Chien, S.-M. (2006) Source identification and size distribution of atmospheric polycyclic aromatic hydrocarbons during rice straw burning period. Atmos. Environ., 40, 1266-1274.   DOI
30 Cohn, C.A., Lemieux, C.L., Long, A.S., Kystol, J., Vogel, U., White, P.A. and Madsen, A.M. (2011) Physical-chemical and microbiological characterization, and mutagenic activity of airborne PM sampled in a biomass-fueled electrical production facility. Environ. Mol. Mutagen., 52, 319-330.   DOI
31 Chakraborty, R. and Mukherjee, A. (2009) Mutagenicity and genotoxicity of coal fly ash water leachate. Ecotoxicol. Environ. Saf., 72, 838-842.   DOI
32 Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I. and Zeger, S.L. (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N. Engl. J. Med., 343, 1742-1749.   DOI
33 Weidemann, E., Andersson, P.L., Bidleman, T., Boman, C., Carlin, D.J., Collina, E., Cormier, S.A., Gouveia-Figueira, S.C., Gullett, B.K., Johansson, C., Lucas, D., Lundin, L., Lundstedt, S., Marklund, S., Nording, M.L., Ortuno, N., Sallam, A.A., Schmidt, F.M. and Jansson, S. (2016) 14th congress of combustion by-products and their health effectsorigin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources. Environ. Sci. Pollut. Res. Int., 23, 8141-8159.   DOI
34 Brunekreef, B. and Holgate, S.T. (2002) Air pollution and health. Lancet, 360, 1233-1242.   DOI
35 Kim, K.H., Kabir, E. and Kabir, S. (2015) A review on the human health impact of airborne particulate matter. Environ. Int., 74, 136-143.   DOI
36 Cai, H.Y., Guell, A.J., Chatzakis, I.N., Lim, J.Y., Dugwell, D.R. and Kandiyoti, R. (1996) Combustion reactivity and morphological change in coal chars: Effect of pyrolysis temperature, heating rate and pressure. Fuel, 75, 15-24.   DOI
37 Yang, W. and Omaye, S.T. (2009) Air pollutants, oxidative stress and human health. Mutat. Res., 674, 45-54.   DOI
38 Lim, W.Y. and Seow, A. (2012) Biomass fuels and lung cancer. Respirology, 17, 20-31.   DOI
39 Kadam, K.L., Forrest, L.H. and Jacobson, W.A. (2000) Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects. Biomass Bioenergy, 18, 369-389.   DOI
40 Liu, G., Niu, Z., Van Niekerk, D., Xue, J. and Zheng, L. (2008) Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology. Rev. Environ. Contam. Toxicol., 192, 1-28.
41 Lorenzi, D., Entwistle, J.A., Cave, M. and Dean, J.R. (2011) Determination of polycyclic aromatic hydrocarbons in urban street dust: Implications for human health. Chemosphere, 83, 970-977.   DOI