• Title/Summary/Keyword: Packet-base

Search Result 207, Processing Time 0.025 seconds

Dynamic States Consideration for Next Hop Nodes Selection Method to Improve Energy Efficiency in LEAP based Wireless Sensor Networks (LEAP기반의 무선 센서 네트워크에서 가변적 상태를 고려한 에너지 효율적 다음 홉 노드 선택 기법)

  • Nam, Su-Man;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.558-564
    • /
    • 2013
  • Wireless sensor networks (WSNs) contain limited energy resources and are left in open environments. Since these sensor nodes are self-operated, attacks such as sinkhole attacks are possible as they can be compromised by an adversary. The sinkhole attack may cause to change initially constructed routing paths, and capture of significant information at the compromised node. A localized encryption and authentication protocol (LEAP) has been proposed to authenticate packets and node states by using four types of keys against the sinkhole attack. Even though this novel approach can securely transmits the packets to a base station, the packets are forwarded along the constructed paths without checking the next hop node states. In this paper, we propose the next hop node selection method to cater this problem. Our proposed method evaluates the next hop node considering three factors (i.e., remaining energy level, number of shared keys, and number of filtered false packets). When the suitability criterion for next hop node selection is satisfied against a fix threshold value, the packet is forwarded to the next hop node. We aim to enhance energy efficiency and a detour of attacked areas to be effectively selected Experimental results demonstrate validity of the proposed method with up to 6% energy saving against the sinkhole attack as compared to the LEAP.

Slotted ALOHA Random Access with Multiple Coverage Classes for IoT Applications (사물인터넷 응용을 위한 다중 커버리지 클래스를 지원하는 슬롯화된 알로하 랜덤 접속)

  • Kim, Sujin;Chae, Seungyeob;Cho, Sangjin;Rim, Minjoong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.554-561
    • /
    • 2017
  • IoT (Internet of Things) devices are often located in environments where indoor or underground, signals are difficult to reach. In addition, the transmission power is low, the base station should be designed to be able to receive signals even at low reception sensitivity. For this reason, a device having a poor channel condition can be transmitted at a low data rate using a low coding rate or repetition. When the coverage class is divided according to the channel condition and the data rate, the packet length may vary from one coverage class to another, and the performance of the slotted aloha random access may be degraded. We will focus on two methods of using shared-resource and seperate resources among multiple slotted aloha methods. In particular, when devices with different coverage classes use shared resources, performance of a device with a bad channel condition may deteriorate. Conversely, when using separate resources for each coverage class, there is a problem that congestion may occur which increases the number of devices that perform random access to one resource area. In this paper, we propose some methods to overcome this problem. This study is mainly focused on MTC devices, and is considered to be a high possibility of future development.

A Maximally Disjoint Multipath Routing Protocol Based on AODV in Mobile Ad Hoc Networks (모바일 애드혹 네트워크에서의 AODV 기반 치대 비중첩 다중경로 라우팅 프로토콜)

  • Kim Jungtae;Moh Sangman;Chung Ilyong
    • The KIPS Transactions:PartC
    • /
    • v.12C no.3 s.99
    • /
    • pp.429-436
    • /
    • 2005
  • A mobile ad hoc network (MANET) is a collection of mobile nodes without any fixed infrastructure or my form of centralized administration such as access points and base stations. The ad hoc on-demand distance vector routing (AODV) protocol is an on-demand routing protocol for MANETs, which is one of the Internet-Drafts submitted to the Internet engineering task force (IETF) MANET working group. This paper proposes a new multipath routing protocol called maximally disjoint multipath AODV (MDAODV), which exploits maximally node- and link-disjoint paths and outperforms the conventional multipath protocol based on AODV as well as the basic AODV protocol. The key idea is to extend only route request (RREQ) message by adding source routing information and to make the destination node select two paths from multiple RREQs received for a predetermined time period. Compared to the conventional multipath routing protocol, the proposed MDAODV provides more reliable and robust routing paths and higher performance. It also makes the destination node determine the maximally node- and link-disjoint paths, reducing the overhead incurred at intermediate nodes. Our extensive simulation study shows that the proposed MDAODV outperforms the conventional multipath routing protocol based on AODV in terms of packet delivery ratio and average end-to-end delay, and reduces routing overhead.

Performance Analysis of Sensor Network Real-Time Traffic for Factory Automation in Intranet Environment (인트라넷 환경에서의 공장자동화를 위한 센서 망 실시간 트래픽 성능 평가)

  • Song, Myoung-Gyu;Choo, Young-Yeol
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.1007-1015
    • /
    • 2008
  • In order to provide real-time data from sensors and instruments at manufacturing processes on web, we proposed a communication service model based on XML(eXtensible Markup Language). HTML(Hyper Text Markup Language) is inadequate for describing real-time data from manufacturing plants while it is suitable for display of non-real-time multimedia data on web. For applying XML-based web service of process data in Intranet environment, real-time performance of communication services was evaluated to provide the system design criteria. XML schema for the data presentation was proposed and its communication performance was evaluated by simulation in terms of transmission delay due to increased message length and processing delay for transformation of raw data into defined format. For transformation of raw data into XML format, we proposed two structures: one is the scheme where transformation is done at an SCC(Supervisory Control Computer) after receiving real-time data from instruments. the other is the scheme where transformation is carried out at instruments before the data are transmitted to the SCC. Performances of two structures were evaluated on a testbed under various conditions such as six packet sizes and offered loads of 20%, 50% and 80%, respectively. Test results show that proposed schemes are applicable to the systems in Ethernet 100BaseT network if total message traffic is less than 7 Mbps.

  • PDF

Performance Analysis of Docker Container Migration Using Secure Copy in Mobile Edge Computing (모바일 엣지 컴퓨팅 환경에서 안전 복사를 활용한 도커 컨테이너 마이그레이션 성능 분석)

  • Byeon, Wonjun;Lim, Han-wool;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.901-909
    • /
    • 2021
  • Since mobile devices have limited computational resources, it tends to use the cloud to compute or store data. As real-time becomes more important due to 5G, many studies have been conducted on edge clouds that computes at locations closer to users than central clouds. The farther the user's physical distance from the edge cloud connected to base station is, the slower the network transmits. So applications should be migrated and re-run to nearby edge cloud for smooth service use. We run applications in docker containers, which is independent of the host operating system and has a relatively light images size compared to the virtual machine. Existing migration studies have been experimented by using network simulators. It uses fixed values, so it is different from the results in the real-world environment. In addition, the method of migrating images through shared storage was used, which poses a risk of packet content exposure. In this paper, Containers are migrated with Secure CoPy(SCP) method, a data encryption transmission, by establishing an edge computing environment in a real-world environment. It compares migration time with Network File System, one of the shared storage methods, and analyzes network packets to verify safety.

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

Design and Implementation of Transmission Scheduler for Terrestrial UHD Contents (지상파 UHD 콘텐츠 전송 스케줄러 설계 및 구현)

  • Paik, Jong-Ho;Seo, Minjae;Yu, Kyung-A
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.118-131
    • /
    • 2019
  • In order to provide 8K UHD contents of terrestrial broadcasting with a large capacity, the terrestrial broadcasting system has various problems such as limited bandwidth and so on. To solve these problems, UHD contents transmission technology has been actively studied, and an 8K UHD broadcasting system using terrestrial broadcasting network and communication network has been proposed. The proposed technique is to solve the limited bandwidth problem of terrestrial broadcasting network by segmenting 8K UHD contents and transmitting them to heterogeneous networks through hierarchical separation. Through the terrestrial broadcasting network, the base layer corresponding to FHD and the additional enhancement layer data for 4K UHD are transmitted, and the additional enhancement layer data corresponding to 8K UHD is transmitted through the communication network. When 8K UHD contents are provided in such a way, user can receive up to 4K UHD broadcasting by terrestrial channels, and also can receive up to 8K UHD additional communication networks. However, in order to transmit the 4K UHD contents within the allocated bit rate of the domestic terrestrial UHD broadcasting, the compression rate is increased, so a certain level of image deterioration occurs inevitably. Due to the nature of UHD contents, video quality should be considered as a top priority over other factors, so that video quality should be guaranteed even within a limited bit rate. This requires packet scheduling of content generators in the broadcasting system. Since the multiplexer sends out the packets received from the content generator in order, it is very important to make the transmission time and the transmission rate of the process from the content generator to the multiplexer constant and accurate. Therefore, we propose a variable transmission scheduler between the content generator and the multiplexer to guarantee the image quality of a certain level of UHD contents in this paper.