• Title/Summary/Keyword: Packet Delay

Search Result 1,168, Processing Time 0.03 seconds

Performance Analysis of the Dynamic Minislot reservation Protocol in Single-hop WDM Networks (단일-홉 파장분할 다중화 통신망에서 동적 미니슬롯 예약 프로토콜의 성능분석)

  • Jeong, Kil-Hyun;Lee, Jong-Kyu
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.205-215
    • /
    • 2002
  • In this paper the Dynamic Minislot Reservation Protocol(DMRP) in which the control channel is divided into contention-less and contention minislots in order to reduce re-transmission probability in multicasting is proposed. In the network, earth node has two pairs of transceivers. A transceiver consisting of a fixed transmitter and a fixed receiver is used to control packet registration and the other transceiver is used to transmit data. Two types f transceivers for data transmission are considered : one is FT-TR(Fixed Transmitter-Tunable Receiver) and the other is TT-TR(Tunable Transmitter-Tunable Receiver). In the analysis, FT-TR and TT-TR single-hop passive star networks are compared. As results, we conclude that the DMRP protocol with dynamically divided control channel has improved the system performance such as throughput and system delay regardless of traffic type or network structure.

A Design of MAC Protocol for Dynamic WDM Channel and Bandwidth Allocation in TDM-PON (TDM-PON에서 동적 WDM 채널 및 대역폭 할당을 위한 MAC 프로토콜 설계 연구)

  • Lee Sung-Kuen;Kim Eal-Lae;Lee Yong-Won;Lee Sang-Rok;Jung Dae-Kwang;Hwang Seong-Taek;Oh Yun-Je;Park Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.777-784
    • /
    • 2006
  • In this paper, we propose the PON-based access network based on conventional TDM-PON architecture, which utilizes WDM wavelength channel and bandwidth dynamically. It is also described a dynamic MAC protocol in order to increase the number of subscribers and efficiency of resource utilization. Of particular importance in the proposed approach for MAC protocol is that the wavelength channel and time slot for up/downlink is dynamically allocated according to the required QoS level and the amount of data in data transmission, through the dedicated control channel between OLT and ONU. We evaluate the performance of average packet end-to-end delay in a statistical analysis and numerical analysis. In addition, through simulations with various traffic models, we verified the superior performance of the proposed approach by comparing with the results of other E-PONs.

Smart Grid Cooperative Communication with Smart Relay

  • Ahmed, Mohammad Helal Uddin;Alam, Md. Golam Rabiul;Kamal, Rossi;Hong, Choong Seon;Lee, Sungwon
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.640-652
    • /
    • 2012
  • Many studies have investigated the smart grid architecture and communication models in the past few years. However, the communication model and architecture for a smart grid still remain unclear. Today's electric power distribution is very complex and maladapted because of the lack of efficient and cost-effective energy generation, distribution, and consumption management systems. A wireless smart grid communication system can play an important role in achieving these goals. In this paper, we describe a smart grid communication architecture in which we merge customers and distributors into a single domain. In the proposed architecture, all the home area networks, neighborhood area networks, and local electrical equipment form a local wireless mesh network (LWMN). Each device or meter can act as a source, router, or relay. The data generated in any node (device/meter) reaches the data collector via other nodes. The data collector transmits this data via the access point of a wide area network (WAN). Finally, data is transferred to the service provider or to the control center of the smart grid. We propose a wireless cooperative communication model for the LWMN.We deploy a limited number of smart relays to improve the performance of the network. A novel relay selection mechanism is also proposed to reduce the relay selection overhead. Simulation results show that our cooperative smart grid (coopSG) communication model improves the end-to-end packet delivery latency, throughput, and energy efficiency over both the Wang et al. and Niyato et al. models.

Analytical Modeling of TCP Dynamics in Infrastructure-Based IEEE 802.11 WLANs

  • Yu, Jeong-Gyun;Choi, Sung-Hyun;Qiao, Daji
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.518-528
    • /
    • 2009
  • IEEE 802.11 wireless local area network (WLAN) has become the prevailing solution for wireless Internet access while transport control protocol (TCP) is the dominant transport-layer protocol in the Internet. It is known that, in an infrastructure-based WLAN with multiple stations carrying long-lived TCP flows, the number of TCP stations that are actively contending to access the wireless channel remains very small. Hence, the aggregate TCP throughput is basically independent of the total number of TCP stations. This phenomenon is due to the closed-loop nature of TCP flow control and the bottleneck downlink (i.e., access point-to-station) transmissions in infrastructure-based WLANs. In this paper, we develop a comprehensive analytical model to study TCP dynamics in infrastructure-based 802.11 WLANs. We calculate the average number of active TCP stations and the aggregate TCP throughput using our model for given total number of TCP stations and the maximum TCP receive window size. We find out that the default minimum contention window sizes specified in the standards (i.e., 31 and 15 for 802.11b and 802.11a, respectively) are not optimal in terms of TCP throughput maximization. Via ns-2 simulation, we verify the correctness of our analytical model and study the effects of some of the simplifying assumptions employed in the model. Simulation results show that our model is reasonably accurate, particularly when the wireline delay is small and/or the packet loss rate is low.

Performance Analysis of Position Based Routing Protocol for UAV Networks (UAV 네트워크 환경에 적합한 위치기반 라우팅 프로토콜의 성능 분석)

  • Park, Young-Soo;Jung, Jae-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.188-195
    • /
    • 2012
  • Many systems are developing for the realization of NCW(Network Centric Warfare). UAV(Unmanned Aerial Vehicle) Network is attracting attention in a lot of military applications. In general, UAVs have the potential to create an ad-hoc network and greatly reduce the hops from source to destination. However, UAV networks exhibit unique properties such as high mobility, high data rate, and real time service. The routing protocols are required to design the multi-hop routing protocols that can dynamically adapt to the requirements of UAV network. In this paper we analyse Geographic Routing Protocol is based on geographical distance between source and destination for efficient and reliable transmission. Geographic Routing Protocol is evaluated in video service scenarios with TDMA model in our simulation. The simulation results show that the performance of Geographic Routing Protocol is better than the MANET Routing Protocol in terms of packet received ratio, end to end delay, and routing traffic sent.

A Study on OSPF for Active Routing in Wireless Tactical Communication Network (전술통신망에서 능동적 라우팅을 위한 OSPF에 대한 연구)

  • Lee, Seung-Hwan;Lee, Jong-Heon;Lee, Hoon-Seop;Rhee, Seung-Hyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1211-1218
    • /
    • 2010
  • OSPF is the optimized routing protocol in wired network and considered as a tactical routing protocol in wireless tactical communication network. However because it is designed basically based on wired environment, it runs inadequately in wireless tactical environment: noise and jamming signal. So, we proposed new OSPF cost function to develop active routing protocol in wireless tactical communication network. In redefined cost function, there are four parameters that are relative transmission speed, link weight, router utilization, link average BER(Bit Error Rate). These parameters reflect wireless tactical characters. Also, we remodel the option field in Hello packet. It can help user to periodically check the link state. From the simulation result, it is shown that proposed OSPF is better than OSPF in jamming situation and has accumulative delay gain with dispersion of traffic load in entire network.

DTN Routing Protocol Utilizing Underwater Channel Properties in Underwater Wireless Sensor Networks (수중 무선센서네트워크에서 수중채널의 특성을 활용한 DTN 라우팅 프로토콜)

  • Park, Seongjin;Kim, Sungryul;Yoo, Younghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.645-653
    • /
    • 2014
  • Recently, the ocean field researches such as offshore plant, ocean survey and underwater monitoring systems are garnering the attention from both academy and industry. However, the communication in underwater environment is very difficult because of the unique irregular features in water. This is the reason that the application of terrestrial protocols to the water environment is not proper. This paper proposes a routing algorithm that can enhance communication reliability by utilizing channel properties in underwater environment. We address two problems that lead to the poor communication performance, signal attenuation and multi-path problem in water. Overcoming these problems, the proposed algorithm ensures high packet delivery ratio and low transmission delay. Also, this paper evaluates the performance through simulation.

Providing Fairness in Diffserv Architecture using Buffer Management Method (차등서비스 구조에서 버퍼관리기법을 이용한 공평성 제공)

  • 김중규
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.05a
    • /
    • pp.8-13
    • /
    • 2003
  • Historically, IP-based internets have been able to provide a simple best-effort delivery service to all applications they carry. Best effort treats all packets equally, with no service level, packet loss, and delay. But the needs of users have changed. The want to use the new real-time, multimedia, and multicasting applications. Thus, there is a strong need to be able to support a variety of traffic with a variety of quality-of-service requirements. The DiffServ architecture, proposed by the Internet Engineering Task Force(IETF), has become the most viable solution for provising QoS over IP networks. The DiffServ architecture does not specify any handling method between AF out-profile packets and BE packets. This paper propose a mechanism for supporting inter class fairness in the DiffServ architecture. Ⅰ proposed a modified Weighted Round Robin method to protect the BE traffic from AF out-profile packets in the core routers. The proposed technique is evaluated through simulation. Simulation results indicate that the proposed method provides better protection not only for BE packets from AF out-profile packets, but also for the AF in-profile packets in congested networks.

  • PDF

Conversational Quality Measurement System for Mobile VoIP Speech Communication (모바일 VoIP 음성통신을 위한 대화음질 측정 시스템)

  • Cho, Jae-Man;Kim, Hyoung-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.71-77
    • /
    • 2011
  • In this paper, we propose a conversational quality measurement (CQM) system for providing the objective QoS of high quality mobile VoIP voice telecommunication. For measuring the conversational quality, the VoIP telecommunication system is implemented in two smart phones connected with VoIP. The VoIP telecommunication system consists of echo cancellation, noise reduction, speech encoding/decoding, packet generation with RTP (Real-Time Protocol), jitter buffer control and POS (Play-out Schedule) with LC (loss Concealment). The CQM system is connected to a microphone and a speaker of each smart phone. The voice signal of each speaker is recorded and used to measure CE (Conversational Efficiency), CS (Conversational Symmetry), PESQ (Perceptual Evaluation of Speech Quality) and CE-CS-PESQ correlation. We prove the CQM system by measuring CE, CS and PESQ under various SNR, delay and loss due to IP network environment.

WAVE based Multi-Channel MAC(MCM) Technology for Reliable Vehicle Safety Message Service (신뢰성 높은 차량 안전 서비스를 위한 WAVE 기반 Multi-Channel MAC 기술)

  • Park, Jong-Min;Oh, Hyun-Seo;Cho, Sung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.78-85
    • /
    • 2011
  • In vehicle ad-hoc network (VANET) environments, traffic related information such as accident information, emergency information and real time traffic condition have to be delivered to on-board-unit (OBU) or/and road-side-equipment (RSE) for preventing traffic accidents in advance. In this paper, we introduce a Multi-Channel MAC (MCM) since the existing single channel operation may cause packet transmission delay and unexpected communication failure. To offer a seamless safety message transmission during the various services, it is necessary to manage the MAC scheduler in wireless access in vehicular environments (WAVE) systems. The MCM consists of MAC softwares and MAC hardwares where the former and the later ones are implemented with real time operation system based C language and FPGA module with VHDL language, respectively. The performance and QoS are verified by practical measurements and compared with the scheme using single channel operation.