DOI QR코드

DOI QR Code

DTN Routing Protocol Utilizing Underwater Channel Properties in Underwater Wireless Sensor Networks

수중 무선센서네트워크에서 수중채널의 특성을 활용한 DTN 라우팅 프로토콜

  • Park, Seongjin (Pusan National University Department of Computer science & Engineering) ;
  • Kim, Sungryul (Pusan National University Department of Computer science & Engineering) ;
  • Yoo, Younghwan (Pusan National University Department of Computer science & Engineering)
  • Received : 2014.05.26
  • Accepted : 2014.09.18
  • Published : 2014.10.31

Abstract

Recently, the ocean field researches such as offshore plant, ocean survey and underwater monitoring systems are garnering the attention from both academy and industry. However, the communication in underwater environment is very difficult because of the unique irregular features in water. This is the reason that the application of terrestrial protocols to the water environment is not proper. This paper proposes a routing algorithm that can enhance communication reliability by utilizing channel properties in underwater environment. We address two problems that lead to the poor communication performance, signal attenuation and multi-path problem in water. Overcoming these problems, the proposed algorithm ensures high packet delivery ratio and low transmission delay. Also, this paper evaluates the performance through simulation.

최근 해양 플랜트, 해저 탐사, 수중 모니터링 시스템 등에 대한 관심이 급증하고 있으며, 그에 대한 연구도 활발히 진행 중이다. 하지만, 수중 무선 통신은 물속이라는 특수한 환경적 요소로 인해 지상에 비해 매우 열악한 통신 환경을 가진다. 이로 인해 기존에 사용하던 지상 통신의 방법을 수중에 그대로 적용하는 것은 성능적인 면에서 적합하지 않다. 이에 본 논문은 수중 무선 센서네트워크에서 통신 신뢰성을 향상시키기 위하여 수중 환경의 특성을 직접적으로 고려한 라우팅 알고리즘을 제시한다. 특히, 수중 무선 통신을 어렵게 만드는 두 가지 문제, 즉, 다중경로 문제와 신호의 감쇠현상을 해결함으로써 수중에서 보다 나은 신뢰성을 보장하고자 한다. 또한, 실험을 통하여 제시하는 알고리즘이 보다 나은 성능을 보임을 증명하였다.

Keywords

References

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: research challenges," Ad Hoc Networks, vol. 3, no. 3, pp. 257-279, May 2005. https://doi.org/10.1016/j.adhoc.2005.01.004
  2. A. McMahon and S. Farrell, "Delay- and disruption- tolerant networking," IEEE Internet Computing, vol. 13, no. 6, pp. 82-87, Dec. 2009.
  3. M. S. Rahim, P. Casari, F. Guerra, and M. Zorzi, "On the performance of delay-tolerant routing protocols in underwater networks," IEEE OCEANS 2011, pp. 1-7, Santander, Spain, Jun. 2011.
  4. A. Vahdat and D. Becker, Epidemic routing for partially-connected ad hoc networks, Technical Report CS-200006, Apr. 2000.
  5. T. Spyropoulos, K. Psounis, and C. S. Raghavendra, "Spray and wait: An efficient routing scheme for intermittently connected mobile networks," SIGCOMM Workshops (ACM), Philadelphia, PA, USA, Aug. 2005.
  6. S. C. Nelson, M. Bakht, and R. Kravets, "Encounter-based routing in DTNs," IEEE INFOCOM 2009, pp. 846-854, Rio de Janeiro, Brasil, Apr. 2009.
  7. T. Spyropoulos, K. Psounis, and C. S. Raghavendra, "Single-copy routing in intermittently connected mobile networks," Sensor and Ad Hoc Commun. Netw.(IEEE SECON 2004), pp. 235-244, Oct. 2004.
  8. M. Stojanovic, "On the relationship between capacity and distance in an underwater acoustic communication channel," WUWNet 2006(ACM), Los Angeles, California, USA, Sept. 2006.
  9. M. Zorzi, P. Casari, N. Baldo, and A. F. Harris III, "Energy-efficient routing schemes for underwater acoustic networks," IEEE J. Selected Areas in Commun., vol. 23, no. 9, pp. 1754-1766, Dec. 2008.
  10. M. Chitre, "A high-frequency warm shallow waqter acoustic communications channel model and measurements," Acoustical Soc. America, vol. 122, no. 5, pp. 2580-2586, Nov. 2007. https://doi.org/10.1121/1.2782884
  11. P. Qarabaqi, M. Stojanovic, and A. C. Simulator, Acoustic Channel Simulator, Retrieved April., 30, 2014, from http://oalib.hlsresearch.com/Rays/acoustic_channel_simulator_code/acoustic_channel_simulator_info.pdf