• Title/Summary/Keyword: Packed bed

Search Result 357, Processing Time 0.026 seconds

Superitical fluid (SCF) technology application to the regeneration of industrial catalyst contaminated with toxic materials (독성폐기물로 오염된 산업촉매 재생공정에 초임계유체기술의 적용)

  • 이재동;윤용수;홍인권;정일현
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1992
  • Supercritical fluid technology was applied to the regeneration of industrial catalyst contaminated with toxic materials. The regeneration process of activated loaded with phenol was proposed, then the adsorphon tower was packed with the activated carbon-bed. Phenol diffuses into supercritical carbon dioxide(SCC) through the micro-pore and voldge of the activated carbon. The saturated solubility of phenol in SCC depended on the density of SCC varing with temperature and pressure conditions. Therefore, the fasile phase equilibrium calculation model of dxpanded liquid One was proposed, and equilibrium solubility of phenol in SCC was calculated using the model theoretically. The regeneration mechanism of activated carbon was analysed by degree of saturation of phenol and diffusion in SCC. The solubility prediction was more satisfactory for the wide range of SCC density than the dense gas model and the desorption of phenol depended on the degree of saturation of phenol in SCC.

  • PDF

Transport Phenomena in a Steam Methanol Microreformer for Fuel Cell (마이크로 연료전지용 수소개질기내 전달현상 특성 연구)

  • Suh, Jeong-Se
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.3-8
    • /
    • 2008
  • Effect of external heating rate on the conversion efficiency for the steam reforming of methanol is investigated numerically considering both heat and mass transfer of the species in a packed bed microreactor. In a results from the numerical simulation, the conversion efficiency of methanol has been obtained for the external heating rate. The axial variation of mole fraction of methanol has been additionally presented for several cases of external heating rates. The results show that for the constant inlet temperature condition the conversion efficiency of methanol increases with external heating rate over the range of operating conditions.

  • PDF

A Study on Heat Recovery Characteristics of Porous Media According to Periodic Oscillating Flows (주기적 왕복유동에 의한 축열매체의 열회수 특성에 관한 연구)

  • Han, Hwa-Taik;Shin, Min-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.175-182
    • /
    • 2007
  • The objective of the present study is to investigate the heat storage characteristics of a packed bed according to periodically oscillating flows. Experiments have been performed to measure transient temperature distributions in solid and fluid Phases of the porous media. A simplified analytical model has been developed with intra-particle and dispersion effects neglected, and non-dimensional parameters have been derived. The transient temperature distributions according to the simplified numerical model agree well with the experimental results. Heat storage efficiencies defined in two different ways are obtained for various time periods and face velocities.

The Simulation of Electric Field Distribution for Globular Dielectric in the Atmosphere (대기중에서 구(球)형 유전체의 전계 분포 시뮬레이션)

  • 이동훈;박재윤;박홍재;고희석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.305-309
    • /
    • 2003
  • This paper was shown the simulation of electric field distribution of globular dielectric for design of ideal packed-bed plasma reactor. When discharge gap between the electrodes and input voltage are each 20[mm]. 10000[V] in the atmosphere, the results of simulation to the electric field was measured stronger at globular dielectric of $\phi$5[mm] than 1$\phi$[mm] and 3.33$\phi$[mm]. And the maximum electric field or globular dielectric with $\phi$10[mm] was increased about 5[%] to maximum electric field of globular dielectric with $\phi$5[mm] in the atmosphere. when dielectric constant of globular dielectric is 100, it was simulated about 90[%] of maximum electric field of globular dielectric over 1000 dielectric constant. Ana the highest electric field appeared as globular electric was parallel structure with the other globular dielectric side by side of the globular dielectric and connected to electrodes.

REACTIVITY AND DURABILITY OF V2O5 CATALYSTS SUPPORTED ON SULFATED TIO2 FOR SELECTIVE REDUCTION OF NO BY NH3

  • Choo, Soo-Tae;Nam, Chang-Mo
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • The selective catalytic experiments using both sulfated/sulfur-free titania and V2O5/TiO2 catalysts have been conducted for NO reduction by NH3 in a packed-bed, down-flow reactor. The sulfated and vanadia loaded titania exhibited higher activity for NO removal than the sulfur-free catalysts, where > 90% NO removal was achieved over the sulfated V2O5/TiO2 catalyst between 280∼500 C. The surface structure of vanadia species on the catalyst surface played a critical role in the high performance of catalysts in which the existence of monomeric/polymeric vanadate is revealed by Raman spectra studies. Water vapor and SO2 were added to the reacting system for the catalyst deactivation tests. At higher temperatures (T ≥ 350 C), little deactivation was observed over the sulfated V2O5/TiO2 catalysts, showing good durability against SO2 and water vapor, which is compared with deactivation at lower temperatures.

Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor

  • Yadav, Ashish;Verma, Nishith
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.448-460
    • /
    • 2018
  • Copper nanoparticle-doped and graphitic carbon nanofibers-covered porous carbon beads were used as an efficient catalyst for treating synthetic phenolic water by catalytic wet air oxidation (CWAO) in a packed bed reactor over 10-30 bar and $180-230^{\circ}C$, with air and water flowing co-currently. A mathematical model based on reaction kinetics assuming degradation in both heterogeneous and homogeneous phases was developed to predict reduction in chemical oxygen demand (COD) under a continuous operation with recycle. The catalyst and process also showed complete COD reduction (>99%) without leaching of Cu against a high COD (~120,000 mg/L) containing industrial wastewater.

Continuous Hydrogen Production by Heterotrophic Growth of Citrobacter amalonaticus Y19 in Trickle Bed Reactor (Citrobacter amalonaticus Y19의 영양종속 성장을 이용한 Trickle Bed Reactor에서의 연속적인 수소생산)

  • Park, Ji-Young;Lee, Tae-Ho;Oh, You-Kwan;Kim, Jun-Rae;Seol, Eun-Hee;Jung, Gyoo-Yeol;Kim, Mi-Sun;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.458-463
    • /
    • 2005
  • [ $H_2$ ] from CO and water was continuously produced in a trickle bed reactor(TBR) using Citrobacter amalonaticus Y19. When the strain C. was cultivated in a stirred-tank reactor under a chemoheterotrophic and aerobic condition, the high final cell concentration of 13 g/L was obtained at 10 hr. When the culture was switched to an anaerobic condition with the continuous supply of gaseous CO, CO-dependent hydrogenase was fully induced and its hydrogen production activity approached 16 mmol/g cell/hr in 60 hr. The fully induced C. amalonaticus Y19 cells were circulated through a TBR packed with polyurethane foam, and the TBR was operated for more than 20 days for $H_2$ production. As gas retention time decreased or inlet CO partial pressure increased, $H_2$ production rate increased but the conversion from CO to $H_2$ decreased. The maximum $H_2$ production rate obtained was 16 mmol/L/hr at the gas retention time of 25 min and the CO inlet partial pressure of 0.4 atm. The high $H_2$ production rate was attributed to the high cell density in the liquid phase circulating the TBR as well as the high surface area of polyurethane foam used as packing material of the TBR.

Optimization of Interesterification Reaction for the Continuous Production of trans-Free Fat in a Packed Bed Enzyme Bioreactor with Immobilized Lipase (고정화 리파제를 이용한 충진형 효소생물반응기 내에서의 무-트랜스 유지 연속 생산을 위한 에스테르 교환 반응의 최적화)

  • Kim, Sang-Woo;Park, Kyung-Min;Ha, Jae-Uk;Lee, Jae-Hwan;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2009
  • Epidemiological studies showed that high trans-fat consumption is closely associated with getting the risks of cardiovascular disease. The objective of this study was to produce trans-free fat through lipase-catalyzed interesterification, as a substitute for the cream margarine commonly used in industry. Optimum conditions for interesterification in a packed bed enzyme bioreactor (PBEB) were determined using response surface methodology (RSM) based on central composite design. Three kinds of reaction variables were chosen, such as substrate flow rate (0.4-1.2 mL/min), reaction temperature (60-70$^{\circ}C$), and ratio of fully hydrogenated canola oil (FHCO, 35-45%) to evaluate their effects on the degree of interesterification. Optimum conditions from the standpoint of solid fat content (SFC) were found to be as follows: 0.4 mL/min flow rate, 64.7$^{\circ}C$ reaction temperate, and 42.8% (w/w) ratio of FHCO, respectively. The half-life of immobilized lipase in PBEB with two stages at 60$^{\circ}C$ ($1^{st}$ stage) and 55$^{\circ}C$ ($2^{nd}$ stage) was about more than 30 days as estimated by extrapolating the incubation time course of tristearoyl glycerol (TS) conversion, whereas the half-life of the enzyme in PBEB with single stage at 65$^{\circ}C$ was only about 15 days. Finally, the results from SFC analysis suggest that trans-free fat produced in this study seems to be a suitable substitute for the cream margarine commonly used in industry.

OVERVIEW OF FUSION BLANKET R&D IN THE US OVER THE LAST DECADE

  • ABDOU M. A.;MORLEY N. B.;YING A. Y.;SMOLENTSEV S.;CALDERONI P.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.401-422
    • /
    • 2005
  • We review here research and development progress achieved in US Plasma Chamber technology roughly over the last decade. In particular, we focus on two major programs carried out in the US: the APEX project (1998-2003) and the US ITER TBM activities (2003-present). The APEX project grew out of the US fusion program emphasis in the late 1990s on more fundamental science and innovation. APEX was commissioned to investigate novel technology concepts for achieving high power density and high temperature reactor coolants. In particular, the idea of liquid walls and the related research is described here, with some detailed examples of liquid metal and molten salt magnetohydrodynamic and free surface effects on flow control and heat transfer. The ongoing US ITER Test Blanket Module (TBM) program is also described, where the current first wall/blanket concepts being considered are the dual coolant lead lithium concept and the solid breeder helium cooled concepts, both using ferritic steel structures. The research described for these concepts includes both thermofluid MHD issues for the liquid metal coolant in the DCLL, and thermomechanical issues for ceramic breeder packed pebble beds in the solid breeder concept. Finally, future directions for ongoing research in these areas are described.

Adsorption/Desorption Properties of ACF on Toluene and MEK with Operation Condition (공정 조건에 따른 톨루엔 및 MEK에 대한 ACF의 흡·탈착 특성)

  • Baek, Geun-Ho;Kim, Jung-Su;Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2898-2903
    • /
    • 2011
  • Adsorption/desorption characteristics of low concentration methylethylketone(MEK) and toluene vapors in beds packed with activated carbon fibers(ACF) was investigated. Performance of ACF adsorption was characterized by the equilibrium capacity, time to reach equilibrium and desorption efficiency. Experiments were carried out to define the effect of operation variables, such as feed concentration, flow rate, moisture content and bed height. The breakthrough time was shorten with the increase of temperature, flow rate and feed concentration. In addition, an increase of packed height of adsorbents lengthen the breakthrough time. The ACF loaded with MEK and toluene was satisfactorily regenerated by programed heating. It is observed that MEK is more easily removed than toluene at below temperature of $150^{\circ}C$.