Continuous Hydrogen Production by Heterotrophic Growth of Citrobacter amalonaticus Y19 in Trickle Bed Reactor

Citrobacter amalonaticus Y19의 영양종속 성장을 이용한 Trickle Bed Reactor에서의 연속적인 수소생산

  • Park, Ji-Young (Bio-chemical Engineering Laboratory, Department of Chemical & Biochemical Engineering, Pusan National University) ;
  • Lee, Tae-Ho (Bio-chemical Engineering Laboratory, Department of Chemical & Biochemical Engineering, Pusan National University) ;
  • Oh, You-Kwan (Bio-chemical Engineering Laboratory, Department of Chemical & Biochemical Engineering, Pusan National University) ;
  • Kim, Jun-Rae (Bio-chemical Engineering Laboratory, Department of Chemical & Biochemical Engineering, Pusan National University) ;
  • Seol, Eun-Hee (Bio-chemical Engineering Laboratory, Department of Chemical & Biochemical Engineering, Pusan National University) ;
  • Jung, Gyoo-Yeol (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Kim, Mi-Sun (Biomass Research Center, Korea Institute of Energy Research) ;
  • Park, Sung-Hoon (Bio-chemical Engineering Laboratory, Department of Chemical & Biochemical Engineering, Pusan National University)
  • 박지영 (부산대학교 화학생명공학과 생물공학실험실) ;
  • 이태호 (부산대학교 화학생명공학과 생물공학실험실) ;
  • 오유관 (부산대학교 화학생명공학과 생물공학실험실) ;
  • 김중래 (부산대학교 화학생명공학과 생물공학실험실) ;
  • 설은희 (부산대학교 화학생명공학과 생물공학실험실) ;
  • 정규열 (포항공과대학교 화학공학과) ;
  • 김미선 (한국에너지기술연구원 바이오매스연구센터) ;
  • 박성훈 (부산대학교 화학생명공학과 생물공학실험실)
  • Published : 2005.12.30

Abstract

[ $H_2$ ] from CO and water was continuously produced in a trickle bed reactor(TBR) using Citrobacter amalonaticus Y19. When the strain C. was cultivated in a stirred-tank reactor under a chemoheterotrophic and aerobic condition, the high final cell concentration of 13 g/L was obtained at 10 hr. When the culture was switched to an anaerobic condition with the continuous supply of gaseous CO, CO-dependent hydrogenase was fully induced and its hydrogen production activity approached 16 mmol/g cell/hr in 60 hr. The fully induced C. amalonaticus Y19 cells were circulated through a TBR packed with polyurethane foam, and the TBR was operated for more than 20 days for $H_2$ production. As gas retention time decreased or inlet CO partial pressure increased, $H_2$ production rate increased but the conversion from CO to $H_2$ decreased. The maximum $H_2$ production rate obtained was 16 mmol/L/hr at the gas retention time of 25 min and the CO inlet partial pressure of 0.4 atm. The high $H_2$ production rate was attributed to the high cell density in the liquid phase circulating the TBR as well as the high surface area of polyurethane foam used as packing material of the TBR.

Polyurethane foam이 충진된 trickle bed reactor에서 통성혐기성 미생물인 Citrobacter amalonaticus Y19을 이용하여 일산화탄소와 물로부터 연속적인 수소생산을 살펴보았다. C. amalonaticus Y19은 설탕을 탄소원으로 할 때 호기적 조건에서 13 g/L까지 성장하였고 혐기조건에서 CO 가스를 주입하였을 때 약 60시간만에 최대 수소 생산 활성을 나타내었다. TBR 반응기에서 유입가스의 CO의 분압이 증가할수록 혹은 기체 체류시간이 감소할수록 수소 생성속도가 증가하였으나 CO의 전환율은 반대로 감소하였다. 그러나 액상의 유속변화는 반응기 운전 결과에 큰 영향을 주지 못했다. 본 실험에서 얻은 최대 수소 생성속도는 기체 체류시간 25분, 유입 CO 압력 0.4 atm에서 16 mmol/L/hr(전환율 33%)이었다. 이 값은 비슷한 반응기에 대해 보고된 Cowger의 결과보다 약 2배 이상 높은 값으로 통성혐기성균주의 고농도 배양과 다공성 충진물의 사용에 의한 높은 기-액 물질 전달 속도가 그 원인으로 추정되었다.

Keywords

References

  1. 성진지 (1997), 에너지 . 자원기술 정보지 14, 18-21
  2. Uffen, R. L. (1976), Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate, Proc. Natl. Acad. Sci. 73, 3298-3302
  3. Kerby, R. L., P. W. Ludden, and G. P. Roberts (1995), Carbon monoxide- dependent growth of Rhodospiri/lum rubrum, J. Bacteriol. 177, 2241-2244 https://doi.org/10.1128/jb.177.8.2241-2244.1995
  4. Ensign, S. A. and P. W. Ludden (1991), Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum, J. Biol. Chem. 266, 18395-18403
  5. Klasson, K. T., A. Gupta., E. C. Clausen, and J. L. Gaddy (1993), Evaluation of mass-transfer and kinetic parameters for Rhodospirillum rubrum in a continuous stirred tank ractor, Appl, Biochem. Biotch. 37-40, 549-557
  6. Klasson, K. T., K. M. O. Lundback, E. C. Causen, and J. L. Gaddy (1993), Kinetices of light growth and biological hydrogen production from carbon monoxide and water by Rhodospirillum rubrum, J. Biotech. 29, 177-188 https://doi.org/10.1016/0168-1656(93)90049-S
  7. Jung, G. Y., J. R. Kim, H, O. Jung, J. Y. Park, and S. H. Park (1999), A new chemoheterotrophic bacterium catalyzing water-gas shift reaction, Biotechnol. Lett. 21, 869-873 https://doi.org/10.1023/A:1005599600510
  8. Cowger, J. P., K. T. Klassion, M. D. Ackerson, E. C. Clausen, and J. L. Gaddy (1992), Mass-transfer and kinetic aspects in continuous bioreactors using Rhodospiri/lum rubrum, Appl. Biochem. Biotechno. 34-35, 613-624 https://doi.org/10.1007/BF02920582
  9. Drake, H. L. (1982), Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum, J. Bacteriol. 150, 702-709
  10. Van Andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure (1985), Glucose fermentation by C. butyricum grown under a self-generated gas atmosphere in chemostat cultrue, Appl. Microbiol. Biotechnol. 23, 21-26 https://doi.org/10.1007/BF02660113
  11. Gray, G. T. and H. Gest (1965), Biological formation of molecular hydrogen, Science 9, 186-191 https://doi.org/10.1126/science.9.214.186