• 제목/요약/키워드: Packaging machine

검색결과 131건 처리시간 0.026초

A Study on the Real-time Recommendation Box Recommendation of Fulfillment Center Using Machine Learning (기계학습을 이용한 풀필먼트센터의 실시간 박스 추천에 관한 연구)

  • Dae-Wook Cha;Hui-Yeon Jo;Ji-Soo Han;Kwang-Sup Shin;Yun-Hong Min
    • The Journal of Bigdata
    • /
    • 제8권2호
    • /
    • pp.149-163
    • /
    • 2023
  • Due to the continuous growth of the E-commerce market, the volume of orders that fulfillment centers have to process has increased, and various customer requirements have increased the complexity of order processing. Along with this trend, the operational efficiency of fulfillment centers due to increased labor costs is becoming more important from a corporate management perspective. Using historical performance data as training data, this study focused on real-time box recommendations applicable to packaging areas during fulfillment center shipping. Four types of data, such as product information, order information, packaging information, and delivery information, were applied to the machine learning model through pre-processing and feature-engineering processes. As an input vector, three characteristics were used as product specification information: width, length, and height, the characteristics of the input vector were extracted through a feature engineering process that converts product information from real numbers to an integer system for each section. As a result of comparing the performance of each model, it was confirmed that when the Gradient Boosting model was applied, the prediction was performed with the highest accuracy at 95.2% when the product specification information was converted into integers in 21 sections. This study proposes a machine learning model as a way to reduce the increase in costs and inefficiency of box packaging time caused by incorrect box selection in the fulfillment center, and also proposes a feature engineering method to effectively extract the characteristics of product specification information.

Improvement of Drainage at Wet Pulp Mold Process (습식 펄프몰드 생산공정의 탈수성 향상을 위한 연구)

  • Sung Yong Joo;Ryu Jeong-Yong;Kim Hyung Jin;Kim Tae Keun;Song Bong-Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • 제36권3호
    • /
    • pp.52-59
    • /
    • 2004
  • The greater Increase of the demand for environmental friendly materials especially for packaging industry leads to the larger interest in the reusable and recycable materials such as pulp mold. Although the pulp mold has great characteristics for packaging, some deficiency compared with other packaging material like EPS(Expandable Polystyrene) need to be overcome, for example, the relative higher cost. In this report, since the water drainage rate at the forming zone of a wet pulp mold process could have a great influence on the economical efficiency not only by increasing machine speed but also reducing the drying energy, the optimum ways for increasing drainage were investigated The mechanism of vacuum drainage In pulp mold forming was successfully evaluated by using RDA(Retention and Darinage Analyzer). Since the conditions of stock were greatly affected by the pulping time of low consistency pulper, the optimum pupling time was investigated with considerations of all stock preparation processes. The change of stock temperature and the addition of polyelectrolyte could improve the vacuum drainage rate. It was founded that the wire mesh types of mold former had a little influence on the retention because of the relatively mild vacuum drainage. However, the bigger size of dewatering hole showed better drainage rate and could reduce the plugging and con lamination of mold.

Evaluation of Mechanical Stress for Solder Joints (솔더접합부에 대한 기계적 스트레스 평가)

  • ;Yoshikuni Taniguchi
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제9권4호
    • /
    • pp.61-68
    • /
    • 2002
  • Thermal shock testing was used to evaluate reliability that appeared in the solder joints of electronic devices when they were subjected to thermal cycling. Recently, mobile devices have come smaller and multi-functional, with the increasing need for high-density packaging, BGA or CSP has become the main trend for surface mounting technology, and therefore mechanical stress life for solder joints in BGA/CSP type packages has required. Reliability of BGA/CSP solder joints was evaluated with electric resistivity change of daisy chain pattern and stress-strain curve measured using strain gage attached on the surface of PCB under mechanical impact loading. In this report, applications of PCB Universal Testing Machine we have developed and experimental datum of SONY estimating dynamic behavior of mechanical stress in BGA/CSP solder joints are introduced.

  • PDF

Study on the Prediction of Fatigue Life of BGA Typed Solder Joints (BGA 형태 솔더 접합부의 피로 수명 예측에 관한 연구)

  • Kim, Seong-Keol;Kim, Joo-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제17권1호
    • /
    • pp.137-143
    • /
    • 2008
  • Thermal fatigue life prediction for solder joints becomes the most critical issue in present microelectronic packaging industry. And lead-free solder is quickly becoming a reality in electronic manufacturing fields. This trend requires life prediction models for new solder alloy systems. This paper describes the life prediction models for SnAgCu and SnPb solder joints, based upon non-linear finite element analysis (FEA). In case of analyses of the SnAgCu solder joints, two kinds of shapes are used. As a result, it is found that the SnAgCu solder has longer fatigue life than the SnPb solder in temperature cycling analyses.

Development of 2 Level × 4 Cavity Stack Mold for Plastic Container (플라스틱 용기 성형을 위한 스택금형 제작에 관한 연구)

  • Jung, Woo-Chul;Heo, Young-Moo;Shin, Kwang-Ho;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.33-37
    • /
    • 2007
  • In recent, the demand of high-productivity injection mold increases because of the growth of international packaging market. The increase of productivity leads to the large-sized injection molding machine and peripheral devices. For solving this problem, the stack mold which is based on the existing machine and device is studied in advanced countries actively. In this study, as the preliminary research of stack mold development, the stack mold which has 2 Level ${\times}4$ Cavity is designed and manufactured. Besides, the motion and structural analysis are executed to verify the stability of developed stack mold.

  • PDF

Development of a Vacuum Packaging Machine for Peeled Onions (진공식 탈피양파 포장기 개발)

  • 박종률;이영희;조남홍;최승묵;김재규;김희대;오교환
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 한국농업기계학회 2003년도 하계 학술대회 논문집
    • /
    • pp.327-333
    • /
    • 2003
  • 최근 간편함을 추구하는 소비자들의 소비형태 변화로 세척, 박피, 절단 등 가정식 대체식품(HMR)에 대한 수요가 증가하고 있다 특히 양파는 껍질을 벗겨야 하는 불편함 때문에 소비촉진에 한계가 있었으나, 최근 백화점, 대형할인점 등에서는 껍질을 벗긴 양파를 2개 또는 3개씩 진공 포장한 것이 유통되고 있다. 진공포장기법은 제품의 위생적 보관이나 신선도의 장기간 유지를 위해 식품포장 등에 널리 이용되는 기술로 탈피한 양파를 진공포장하면 포장봉지내에 산소가 거의 없기 때문에 미생물의 발육이 억제되어 유통 중 품질을 유지할 수 있다. (중략)

  • PDF

Polymers and polymer-based composites in tribology

  • Sviridenok, A.I.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 한국윤활학회 1990년도 제11회 학술강연회초록집
    • /
    • pp.1-6
    • /
    • 1990
  • Metal-Polymer Research Institute of Bneloressian Academy of Sciences is taking an active part in research and developments in field of polymer materials and composites. Many of these materials are devoted to use as a construction materials for machine parts, protective and decorative coatings on metals, films preventing corrosion in packaging of electronic, machinery and other components. This list can be continued by mentioning polymer capsulation coating for fertilizers, polymer filters produced by extruding and transfer of melted fibers etc.

  • PDF

Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application

  • Bhatia, Amita;Gupta, Rahul K.;Bhattacharya, Sati. N.;Choi, H.J.
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.125-131
    • /
    • 2007
  • Biodegradable polymeric blends are expected to be widely used by industry due to their environmental friendliness and comparable mechanical and thermal properties. Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) are such biodegradable polymers which aim to replace commodity polymers in future applications. Since cost and brittleness of PLA is quite high, it is not economically feasible to use it alone for day to day use as a packaging material without blending. In this study, blends of PLA and PBS with various compositions were prepared by using a laboratory-scale twin-screw extruder at $180^{\circ}C$. Morphological, thermal, rheological and mechanical properties were investigated on the samples obtained by compression molding to explore suitability of these compositions for packaging applications. Morphology of the blends was investigated by scanning electron microscopy (SEM). Morphology showed a clear phase difference trend depending on blend composition. Modulated differential scanning calorimetry (MDSC) thermograms of the blends indicated that the glass transition temperature ($T_g$) of PLA did not change much with the addition of PBS, but analysis showed that for PLA/PBS blend of up to 80/20 composition there is partial miscibility between the two polymers. The tensile strength and modulus were measured by the Instron Universal Testing Machine. Tensile strength, modulus and percentage (%) elongation at break of the blends decreased with PBS content. However, tensile strength and modulus values of PLA/PBS blend for up to 80/20 composition nearly follow the mixing rule. Rheological results also show miscibility between the two polymers for PBS composition less than 20% by weight. PBS reduced the brittleness of PLA, thus making it a contender to replace plastics for packaging applications. This work found a partial miscibility between PBS and PLA by investigating thermal, mechanical and morphological properties.

LED Die Bonder Inspection System Using Integrated Machine Visions (Integrated Machine Vision을 이용한 LED Die Bonder 검사시스템)

  • Cho, Yong-Kyu;Ha, Seok-Jae;Kim, Jong-Su;Cho, Myeong-Woo;Choi, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제14권6호
    • /
    • pp.2624-2630
    • /
    • 2013
  • In LED chip packaging, die bonding is a very important process which fixes the LED chip on the lead flame to provide enough strength for the next process. During the process, inspection processes are very important to detect exact locations of dispensed epoxy dots and to determine bonding status of dies whether they are lies at exact positions with sufficient bonding strength. In this study, a useful machine vision based inspection system is proposed for the LED die bonder. In the proposed system, 2 cameras are used for epoxy dot position detection and 2 cameras are sued for die attaching status determination. New vision processing algorithm is proposed, and its efficiency is verified through required field experiments. Measured position error is less than $X:-29{\mu}m$, $Y:-32{\mu}m$ and rotation error:$3^{\circ}$ using proposed vision algorithm. It is concluded that the proposed machine vision based inspection system can be successfully implemented on the developed die bonding system.