• Title/Summary/Keyword: PZT sensor

Search Result 266, Processing Time 0.023 seconds

Development of Multi-Axis Control Program for Long Range AFM Using an FPGA Module (FPGA 모듈을 이용한 Long Range AFM용 다축 제어 프로그램 개발)

  • Lee J.Y.;Eom T.B.;Kim J.W.;Kang C.S.;Kim J.A.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.289-290
    • /
    • 2006
  • In general, atomic force microscope (AFM) used for metrological purpose has measuring range less than a few hundred micrometers. We design and fabricate an AFM with long measuring range of $200mm{\times}200mm$ in X and Y axes. The whole stage system is composed of surface plate, global stage, microstage. By combining global stage and microstage, the fine and long movement can be provided. We measure the position of the stage and angular motions of the stage by laser interferometer. A piezoresistive type cantilever is used for compact and long term stability and a flexure structure with PZT and capacitive sensor is used for Z axis feedback control. Since the system is composed of various actuators and sensors, a real time control program is required for the implementation of AFM. Therefore, in this work, we designed a multi-axis control program using a FPGA module, which has various functions such as interferometer signal converting, PID control and data acquisition with triggering. The control program achieves a loop rate more than 500 kHz and will be applied for the measurement of grating pitch and step height.

  • PDF

Design of a Triple-input Energy Harvesting Circuit with MPPT Control (MPPT 제어기능을 갖는 삼중입력 에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.346-349
    • /
    • 2013
  • This paper describes a triple-input energy harvesting circuit using solar, vibration and thermoelectric energy with MPPT(Maximum Power Point Tracking) control. The designed circuit employs MPPT control to harvest maximum power available from a solar cell, PZT vibration element and thermoelectric generator. The harvested energies are simultaneously combined and stored in a storage capacitor, and then managed and transferred into a sensor node by PMU(Power Management Unit). MPPT controls are implemented using the linear relation between the open-circuit voltage of an energy transducer and its MPP(Maximum Power Point) voltage. The proposed circuit is designed in a CMOS 0.18um technology and its functionality has been verified through extensive simulations. The designed chip occupies $945{\mu}m{\times}995{\mu}m$.

  • PDF

Piezoelectric properties and microstructure of 0.01Pb(Mg1/2W1/2)O3-0.41Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.23PbZrO3thick film with particle size distribution (입자 크기 분포에 따른 0.01Pb(Mg1/2W1/2)O3-0.41Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.23PbZrO3 후막의 미세구조 및 압전특성)

  • Moon, Hi-Gyu;Song, Hyun-Cheol;Kim, Sang-Jong;Choi, Ji-Won;Kang, Chong-Yun;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.418-424
    • /
    • 2008
  • The PZT based piezoelectric thick films prepared by screen printing method have been mainly used as a functional material for MEMS applications due to their compatibility of MEMS process. However the screen printed thick films generally reveal poor electrical and mechanical properties because of their porous microstructure. To improve microstructure we mixed attrition milled powder with ball milled powder of 0.01Pb$(Mg_{1/2}W_{1/2})O_3$-0.41Pb$(Ni_{1/3}Nb_{2/3})O_3$-$0.35PbTiO_3$-$0.23PbZrO_3$+0.1 wt% ${Y_2}{O_3}$+1.5 wt% ZnO composition. By mixing 25 % of attrition milled powder and 75 % of ball milled powder, the broadest particle size distribution was obtained, leading to a dense thick film with crack-free microstructure and improved dielectric properties. The X-ray diffraction analysis revealed that the film was in wellcrystallized perovskite phase. The remanent polarization was increased from $13.7{\mu}C/cm^2$ to $23.3{\mu}C/cm^2$ at the addition of 25 % attrition milled powder.

A study for implementation of ultrasonic transducer in the prostate cancer hyperthermia (전립선암의 온열치료를 위한 초음파변환기 개발에 관한 연구)

  • Park, Mun-Kyu;Noh, Si-Cheol;Park, Jae-Hyun;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.377-384
    • /
    • 2009
  • The ultrasonic hyperthermia for oncology has been developed and studied. The HIFU(high intensity focused ultrasound) is the most recent method to treat the tumor by using ultrasound. In this study, an insertion-type transducer for treating a prostate cancer, which can focus the ultrasonic beam mechanically and electrically, was designed and developed. The developed transducer was composed of three arrays, and each array has 32 elements. For the purpose of the mechanical focusing, both side arrays are slanted to the center array by $15^{\circ}$. With this structure, NFL(near field length) was set up as 30 mm. The PZT-4 and two matching layers were used, and the backing layer was excepted to prevent energy losses. The acoustic field analysis and the heating test were performed to evaluate the performance of developed transducer. The shape of an acoustic field, peak pressure, and acoustic pressure distribution were compared with numerical simulation. The NFL was 32 mm, the beam width was 5 mm, focal area was $40\;mm^2$, and peak pressure was 5.5 MPa. With heating by using developed transducer, the temperature increased up to $33^{\circ}C$ at focal zone. As a result of this study, the usefulness of suggested transducer for prostate cancer hyperthermia was confirmed by the acoustic field analysis and the heating test with TMM(tissue mimicking) phantom.

Evaluation of Setting Time in Cement Paste with Fly Ash Replacement Using Piezoelectric Sensors (압전센서를 이용한 플라이애시 치환 시멘트 페이스트의 응결 시점 평가)

  • Jun-Cheol Lee;Tae-Yong Go;Chang-Yong Yi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.162-168
    • /
    • 2024
  • This study investigated the setting characteristics of cement paste with varying proportions of fly ash replacement using the electro-mechanical impedance (EMI) sensing technique. Cement paste samples were prepared with a water-to-binder ratio of 40 %, substituting fly ash for 10 %, 20 %, and 30 % of the cement weight. Piezoelectric (PZT) sensors were embedded in the center of each cement paste sample to continuously monitor the EMI signals. Vicat needle test and semi-adiabatic calorimetry test were conducted to validate the reliability of the EMI sensing technique in monitoring the setting of cement paste. Experimental results revealed notable changes in the magnitude and resonant frequency of the EMI resonant peaks during the setting time. It was confirmed that the setting times measured through the EMI sensing technique were correlated with those determined by the Vicat needle test and semi-adiabatic calorimetry test.

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.